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Abstract. Natural cubic spline has been frequently used to represent stem 
forms, with other spline types rarely involved. Splines are a large class of 
functions and there are many other spline types which might serve that pur-
pose. In this paper several different spline types, both interpolation and 
approximation, were investigated and splines more suitable for stem form 
representation than natural cubic spline are proposed. Their abilities to 
model the stem curve using different numbers of input points were com-
pared using data of 85 carefully measured Norway spruce (Picea abies 
[L.] Karst.) stems. When modeling the whole stem profile all interpola-
tion curves with second degree continuity suffer from oscillations. Approxi-
mation splines give satisfactory overall estimations, but they overestimate 
the lower stem and overestimate the upper stem. The best results were ob-
tained with interpolation curves with first degree continuity. Stem curves 
were best described by the Catmull-Rom spline. Previously frequently 
used natural cubic spline performed worse than number of other splines. 
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Introduction

Management of forests for timber production 
requires description of stem form and assess-
ment of stem volume. During the last century, 
researchers have used a wide spectrum of ap-
proaches to represent the stem forms. Simple 
taper models of polynomial (Goulding & Mur-

ray 1976), logarithmic (Demaerschalk 1972), 
trigonometric (Thomas & Parresol 1991), or 
sigmoid (Biging 1984) forms were initially 
used, but were later replaced by more com-
plicated segmented models (Max & Burkhart 
1976, Jiang et al. 2005) or variable exponent 
models (Flewelling & Raynes 1993, Lee et al. 
2003), which are considered the most accurate 
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(Rojo et al. 2005). Modern techniques of data 
acquisition such as terrestrial laser scanners 
(Lovell et al. 2011), close-range terrestrial pho-
togrammetry (Dean 2003, Hapca et al. 2007), 
often require reconstruction of stem curve of 
an individual stem. The stem curve is modeled 
based on a number of measured diameters us-
ing methods of partial representation of stem 
curve segments with the use of interpolation 
and approximation techniques. A modeling 
technique suitable for the purpose are splines.
Spline is a general term for a large class of 
piecewise-defi ned polynomial functions. Two 
basic approaches to the construction of splines 
can be distinguished: interpolation and approx-
imation (Linkeová 2007). The most known 
representative of interpolation splines is the 
natural cubic spline; a twice continuously dif-
ferentiable interpolating curve consisting of cu-
bic polynomials. The computational algorithm 
is well described by Smaltschinski (1983). The 
Catmull-Rom spline is an example of a class of 
important cubic interpolation splines that con-
sist of Ferguson cubics. Only the fi rst deriva-
tive of the curve is continuous which makes the 
curve more fl exible (Kochanek 1984). Among 
approximation splines is important above all 
the B-spline. NURBS (non-uniform rational 
B-splines) are generalizations of B-splines. 
While the knot spacing of B-splines is always 
uniform, the knots of NURBS can be defi ned 
with any spacing or can be set by optimiz-
ing algorithms. All input points of B-splines 
are of equal importance; the relative impor-
tance of particular input points of NURBS can 
be weighted. Algorithms for computing the 
curves as well as their properties were well de-
scribed by Piegl & Tiller (1996) and Linkeová 
(2007). B-splines in the form of interpolation 
B-splines can also be used to interpolate data 
(Piegl & Tiller 1996); in a different approach 
interpolation is achieved by iterative shifting 
of control points (Lin et al. 2004).
 The interpolation cubic spline has been the 
spline most often used to describe stem form 
and to calculate stem volume (Goulding 1979, 

Smaltschinski 1983). It has been demonstrated 
that better results can be achieved by using a 
monotony-preserving quadratic spline rather 
than cubic spline (Lahtinen 1988). Neverthe-
less, later works (Figueiredo-Filho et al. 1996, 
Laasasenaho et al. 2005) used cubic splines. 
Among other spline functions, the smooth-
ing cubic spline was used to describe the stem 
form (Liu 1980) and later to predict the stem 
form in order to optimize cutting points for 
forest harvesters by Koskela et al. 2006.
 The objective of this research was to compare 
the abilities of several different spline types to 
model the stem curve of Norway spruce using 
different numbers of input points.

Materials and methods 

Data

This study used data from 85 Norway spruce 
trees (Picea abies [L.] Karst.). The trees were 
from three stands with ages from 50 to 100 
years located in the School Forest Enterprise 
Kostelec nad Černými lesy, Central Bohe-
mia Region, Czech Republic (49°54’30”N, 
14°52’00”E, 420 m a.s.l.). The area is covered 
by cambiosoils; with average annual tem-
peratures 7.0-7.5°C, total annual precipitation 
600-650 mm and average vegetation period 
length of 153 days. The stands are even-aged 
pure plantations of spruce. In order to cover 
the shape variability dominant trees as well as 
suppressed trees were selected for the analy-
sis. The diameter at breast height (DBH) of the 
trees ranged from 88 to 438 mm (mean 204 
mm), and tree heights ranged from 10.6 to 
37.1 m (mean 21.3 m). The DBH-height rela-
tion of the sample is shown in Figure 1. Trees 
were felled and subsequently diameters out-
side bark were measured from the tree base to 
the top at 0.1-m intervals. The distances from 
the tree base were measured using a steel tape 
with 0.01-m precision, and the diameters were 
measured and recorded with an electronic cali-
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per with 1-mm precision. Thus, several hun-
dred diameters describing the stem form were 
obtained from each tree and were compared 
with the diameters predicted by splines.

Splines

All splines selected for the study are shown 
in Table 1. From interpolation splines, Cat-
mull-Rom spline (CRS), natural cubic spline 
(NCS), interpolation B-splines with uniform 
parametrization of degree 2, 3 and 4 (IBS2, 
IBS3, IBS4) and iterative B-spline of degree 
3 (IterBS) were selected. For all approxima-
tion splines, clamped curves, which exactly 
fi t the fi rst and last control points, were used. 
Four approximation splines (all variants of the 
second, third, and fourth degree) were tested: 
BS, NUBS; NURBSdbh, and NURBSav. BS 
denotes the B-spline with uniform knot spac-
ing. NUBS is the non-uniform B-spline with 
the knot vector determined by averaging meth-
od, which optimizes the knot spacing when in-
put points are unevenly distributed (Linkeová 
2007). The third and the fourth variants were 
represented by NURBS with different weight 
distributions, both with averaging knot vec-
tor. In NURBSdbh, the relative importance 
of the input point representing the DBH was 

increased by setting its weight to 3, while the 
weights of the remaining points were set to 1; 
this should improve the fi t of the butt swell cur-
vature. In NURBSav, the weights were set with 
an averaging algorithm that optimizes weight 
distribution so that the resulting curve passes 
all input points at relatively equal distances 
(Linkeová 2007). Numbers in abbreviations of 
spline types denote degree of each spline.

Evaluation

Nine input point sets were used. Each input 
point set contained a different number (2 to 10) 
of points (stem diameters) defi ned by their rel-
ative height on the stem plus four fi xed points 
defi ned as follows: the stem foot (h = 0 m), the 
stump top (h = 0.3 m), breast height (h = 1.3 
m), and the stem top. Both the stem foot and 
the top must be involved to obtain the curve of 
the whole stem. The stump diameter is required 
for the proper description of the butt swell. 
DBH is included because it is a conventional 
parameter, and its value is always measured. 
Sets of relative heights representing optimal 
input point distributions for a given number of 
points for natural cubic spline (Table 2) were 
taken from Figueiredo-Filho et al. (1996).
 The residuals between predicted and meas-

The DBH-height relation of the sample treesFigure 1 



140

Ann. For. Res. 57(1): 137-148, 2014                                                                                                                      Research article 

ured diameters were assessed for each posi-
tion of measured diameters. The accuracy of 
the predicted curves was evaluated with fi ve 
statistical criteria computed for each stem (Ta-
ble 3). Diameter bias (DB) indicates whether a 
modeled curve systematically under- or over-
estimates stem thickness. The mean absolute 
residual (MAR) refl ects the average distance 
between the predicted and the original diame-
ters. The standard deviation of residuals (SDR) 
detects heterogeneity in residual values; large 
values may signify oscillations, which are un-
desirable. The mean squared residual (MSR) 
value reveals locally high deviations in the 
curve; high MSR value relative to the MAR 
value usually signifi es oscillations. The total 
volume difference (TVD) calculated for the 
whole stem expresses the absolute difference 
between volume calculated from the spline 
model and volume assessed from real meas-
ured diameters. Both the volume of spline 
models and volume of stems were calculated 
as the sum of the particular volumes of log 
sections using Smalians equation. To deter-
mine the effect of individual splines, values of 
each evaluative criterion were inspected using 

analysis of variance for curves generated with 
the same number of points. Also the effect of 
input point number was determined for each 
evaluative criterion using analysis of variance 
separately for each spline type. Programs for 
computing separate splines were written in 
MATLAB version R2012b (The MathWorks, 
Inc.), which was also used for statistical evalu-
ation.

Results 

Based on preliminary analyses, interpolation 
B-splines of degree 3 and 4 (IBS3, IBS4) were 
excluded because they generated uncontrolla-
ble oscillations. Approximation splines of de-
gree 4 (BS4, NUBS4, NURBSdbh4, NURB-
Sav4) were removed from subsequent analysis 
because of their low forming ability.

The influence of input point number

The accuracy of spline stem curve models 
improved with an increase in the number of 
input points up to a threshold number. As il-

Specifi cation of utilized splinesTable 1 
Sign Spline type Specifi cation
CRS Catmull-Rom Spline
NCS Natural Cubic Spline
IBSu2 Interpolate B-spline degree 2; uniformly spaced parameterization
IBSu3 Interpolate B-spline degree 2; uniformly spaced parameterization
IBSu4 Interpolate B-spline degree 2; uniformly spaced parameterization
IterBS Iterative non-unif. B-spline degree 3; number of iterations: 50
BS2 B-spline degree 2;
BS3 B-spline degree 3;
BS4 B-spline degree 4;
NUBS2 Non-uniform B-spline degree 2; averaging knot vector method
NUBS3 Non-uniform B-spline degree 3; averaging knot vector method
NUBS4 Non-uniform B-spline degree 4; averaging knot vector method
NURBS2 NURBS degree 2; averaging knot vector, weight in DBH = 3
NURBS3 NURBS degree 3; averaging knot vector, weight in DBH = 3
NURBS4 NURBS degree 4; averaging knot vector, weight in DBH = 3
NURBS2aw NURBS degree 2; averaging knot vector, averaging weight distribution
NURBS3aw NURBS degree 3; averaging knot vector, averaging weight distribution
NURBS4aw NURBS degree 4; averaging knot vector, averaging weight distribution
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lustrated in Table 4, near maximum accuracy 
was obtained in almost all cases with nine in-
put points (four input points at fi xed positions 
and fi ve additional points at relative heights); 
the use of more than nine input points did not 
result in a statistically signifi cant improvement 
in accuracy. No signifi cant improvement in ac-
curacy was observed even with the use of the 
full set of 22 input points (absolute heights 0 
m, 0.3 m, 1.3 m and relative heights 10 %, 15 
% . . . 95 %, 100 %). Therefore the use of more 
than 9 input points was not investigated in this 
study. The effect of numbers of input points is 
demonstrated with an example based on MAR 
values obtained with the Catmull-Rom spline 

(Figure 2).

Performance of individual splines

Individual spline types with 6 (the least 
number investigated; 0 m, 0.3 m, 1.3 m, 15%, 
35%, 100%) and 9 (the highest number mean-
ingful for accuracy improvement; 0 m, 0.3 m, 
1.3 m, 10%, 25%, 45%, 65%, 85%, 100%) 
input points are compared in Tables 5 and 6. 
Indication of signifi cant differences among in-
dividual spline types is provided according to 
each criterion. Due to similar behavior of some 
spline types the number of splines was reduced 
for visualization of their performance. The it-

Optimal combinations of input points for particular point numbers (Figueiredo-Filho et al. 1996)Table 2 

Statistical criteria used for evaluating the accuracy of the modelsTable 3 

Combination no. Relative height (%)
1 15, 35
2 15, 45, 75
3 10, 25, 45, 65
4 10, 25, 45, 65, 85
5 10, 25, 35, 45, 65, 85
6 10, 15, 25, 45, 65, 85, 95
7 10, 15, 25, 35, 45, 65, 85, 95
8 10, 15, 25, 35, 45, 55, 65, 85, 95
9 10, 15, 25, 35, 45, 55, 65, 75, 85, 95

Sign Statistical criterion Calculation
DB Diameter bias Σ Diffi / N

MAR Mean absolute residual Σ abs(Diffi) / N

SDR Standard deviation of residuals Σ [(Diffi-DB)2 / (N-1)]0.5

MSR Mean squared residual Σ (Diffi)
2/ N

VD Volume difference Vspl-Vorig

Diffi Difference between predicted and measured diameter
N Number of measured diameters
Vspl Volume form predicted diameters Σ Li (πdi

2+ πdi+1
2)/8

Vorigl Volume form measured diameters Σ Li (πDi
2+ πDi+1

2)/8

di Predicted diameter
Di Measured diameter
Li Distance between ith and (i+1)th diameter
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erative B-spline acted similarly as the natural 
cubic spline but performed worse; therefore 
only natural cubic spline is visualized. From 
all approximation splines the best representa-
tive (BS2) was selected for visualization. The 

distribution of residuals of nine-point Catmull-
Rom spline, as well as 2nd degree interpolation 
B-spline, natural cubic spline and 2nd degree 
approximation B-spline are shown in Figure 3. 
While for Catmull-Rom spline and interpola-

Numbers of input points suffi cient for accurate description of the stem form in terms of the indi-
cated statistic

Table 4 

Spline DB MAR SDR MSR TVD
CRS 9 9 9 7 7
IBSu2 9 7 7 7 8
NCS 8 8 8 8 8
IterBS 9 8 8 8 8
BS2 9 9 9 7 9
BS3 9 9 7 7 9
NUBS2 9 9 9 7 9
NUBS3 9 9 9 9 9
NURBSdbh2 9 9 7 7 9
NURBSdbh3 9 9 9 9 9
NURBSav2 9 9 9 9 9
NURBSav3 11 9 9 9 11

Relationship between mean absolute residual (MAR) and number of input points for the Catmull-
Rom spline. Combination no. 10 contains 22 input points, as idicated in the text. Boxes indicate 
medians and 25th and 75th percentiles; notches indicate comparison intervals for medians; whisk-
ers correspond to 99 % coverage of the data; crosses denote outlier values

Figure 2 
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tion B-spline residuals are symmetrically dis-
tributed in a narrow interval around zero, the 
other two splines show residuals of high values 
and asymmetrical distribution of residuals. The 
performance of these four selected representa-
tives is shown in Figures 4 and 5.
 The only spline that did not show systematic 
errors in both diameter prediction and volume 
estimation with more than 6 points was the 

Catmull-Rom spline (Figure 4). Moreover, the 
Catmull-Rom spline together with the second 
degree interpolation B-spline had the lowest 
values of MAR, SDR, and MSR. The inter-
polation B-spline (Figure 4), that exhibits also 
low diameter errors, systematically underesti-
mated the total volume even with higher num-
bers of input points.
 When six points were used, the natural cu-

Mean values (mean) and standard deviations (SD) of statistics for splines based on six input 
points

Table 5 

Mean values and standard deviations of statistics for splines based on nine input pointsTable 6 

Spline
DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)
mean SD sign. mean SD sign. mean SD sign. mean SD sign. mean SD sign.

CRS -1.03 0.52 a* 1.30 0.54 a,b 1.64 0.69 a,b 0.32 0.26 a -8.22 3.69 a*
IBSu2 -0.92 0.49 a* 1.14 0.47 a 1.46 0.61 a 0.25 0.21 a -8.14 3.80 a*
NCS 0.44 1.03 c* 1.76 1.33 c 2.11 1.49 c 0.67 0.99 b 6.27 11.01 b*
IterBS 0.49 1.11 c* 2.26 1.74 d 2.73 1.97 d 1.13 1.61 c 7.12 12.89 b*
BS2 -1.16 0.61 a,b* 1.57 0.61 b,c 1.93 0.75 b,c 0.43 0.33 a,b -9.24 4.01 a*
BS3 -1.15 0.61 a,b* 1.67 0.64 b,c 2.02 0.77 b,c 0.47 0.35 a,b -8.85 4.17 a*
NUBS2 -1.24 0.63 a,b* 1.61 0.63 b,c 1.95 0.76 b,c 0.45 0.34 a,b -10.34 4.09 a,c*
NUBS3 -1.28 0.65 a,b* 1.71 0.66 b,c 2.04 0.79 b,c 0.48 0.37 a,b -10.83 4.31 a,c*
NURBSdbh2 -1.17 0.64 a,b* 1.68 0.63 b,c 2.08 0.77 b,c 0.50 0.36 a,b -8.99 4.36 a*
NURBSdbh3 -1.27 0.68 a,b* 1.83 0.68 c 2.20 0.80 c 0.55 0.39 a,b -10.30 4.94 a,c*
NURBSav2 -1.44 0.74 b* 1.93 0.72 c,d 2.30 0.85 c,d 0.61 0.44 b -12.33 4.89 c*
NURBSav3 -1.47 0.73 b* 1.90 0.73 c,d 2.22 0.86 c 0.57 0.43 a,b -12.98 4.76 c*

Spline
DB (10-2 m) MAR (10-2 m) SDR (10-2 m) MSR (10-3 m2) TVD (%)
mean SD sign. mean SD sign. mean SD sign. mean SD sign. mean SD sign.

CRS 0.00 0.15 a,b 0.39 0.11 a 0.54 0.17 a 0.03 0.02 a 0.25 2.17 a
IBSu2 0.02 0.15 a,b 0.43 0.12 a,b 0.66 0.23 a,b 0.05 0.04 a,b -1.27 2.52 b*
NCS -0.16 0.19 c* 0.70 0.32 c 1.07 0.53 c 0.14 0.15 c -1.68 2.51 b,c*
IterBS -0.26 0.23 d* 0.95 0.48 d 1.52 0.82 d 0.30 0.33 d -2.89 2.77 c*
BS2 -0.01 0.17 a,b 0.52 0.13 b,e 0.83 0.24 b 0.07 0.04 a,b 1.43 2.34 a,d,e*
BS3 -0.02 0.19 a,b 0.58 0.15 e 0.93 0.29 b,c 0.09 0.06 b,c 1.63 2.44 d,e*
NUBS2 -0.02 0.17 a,b 0.51 0.12 b,e 0.80 0.23 b 0.07 0.04 a,b 1.22 2.31 a,d*
NUBS3 -0.04 0.20 a* 0.59 0.16 c,e 0.94 0.28 b,c 0.10 0.06 b,c 1.39 2.47 a,d*
NURBSdbh2 0.05 0.19 b 0.58 0.14 e 1.03 0.35 c 0.12 0.08 b,c 2.64 2.77 d,e*
NURBSdbh3 0.02 0.22 a,b 0.66 0.17 c,e 1.17 0.42 c 0.15 0.11 c 2.72 3.05 d,e*
NURBSav2 0.00 0.20 a,b 0.62 0.15 c,e 1.07 0.35 c 0.12 0.08 b,c 2.24 2.79 d,e*
NURBSav3 -0.08 0.24 a,c* 0.69 0.20 c 1.06 0.34 c 0.12 0.08 b,c 1.45 2.71 a,d,e*

Note. Values in a column followed by the same letter (sign.) indicate no signifi cant difference between spline types. Stars 
in columns DB and TVD indicate mean values signifi cantly different from zero.

Note. The abbreviations are the same as for Table 5.
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bic spline (Figure 5) and the iterative B-spline 
had positive bias and overestimated the stem 
volume. With seven or more input points, the 
natural cubic spline and iterative B-spline 

systematically underestimated the diameters 
and the total volumes. With six or seven input 
points, these two spline types had the highest 
SDR and MSR values among all splines, in-

Histograms of diameter residuals of four important splines with 9 input pointsFigure 3 

Stem-form curves modeled by the Catmull-Rom spline (left) and 2nd degree interpolation B-spline 
(right) based on six and nine input points

Figure 4 
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dicating a chance of oscillations; deviations 
with the iterative B-spline were always higher. 
The presence of oscillation with the natural 
cubic spline is also obvious from the display 
of sectional diameter bias in Figures 6 and 7. 
With more than seven input points, residuals 
and their square values were most pronounced 
with the iterative B-spline while oscillations 
generated by the natural cubic spline were re-
duced.
 The behavior of all approximation splines 
was very similar. BS2 was the best representa-
tive of the group, and its curves are shown in 
Figure 5. With an increase in the number of 
input points, MAR, SDR, and MSR for all the 
approximation splines decreased, indicating 
that the fi t of the splines to the real stem curve 
improved. On the other hand, bias values and 
total volume estimates increased with increas-
ing input points. For input combinations 1-3 
(six to eight points), bias was negative, while 
for more than 11 input points, bias became 
positive. The TVD value was negative for the 
smallest number of input points; for more than 
eight input points, the total volume was signifi -
cantly overestimated. With the approximation 
splines, residual values tended to increase (in 
many cases with statistical signifi cance) with 
an increase in the spline degree. In addition, 
residual values were higher for NURBS than 
for B-splines.

Discussion

The propensity of the natural cubic spline for 
oscillations has been described earlier (Lahtin-
en 1988, Figueiredo-Filho et al. 1996) and is 
attributed to the continuity of its second de-
rivative. In agreement with (Figueiredo-Filho 
et al. 1996), oscillation in the current study 
most often occurred with smaller numbers of 
input points. The oscillations produced by the 
iterative B-spline were even higher than those 
of the natural cubic spline and are easily ex-
plained. The natural cubic spline has minimal 
curvature among all second-order continu-
ous curves interpolating a given set of points 
(Lahtinen 1988, Liu 1980). Because the itera-
tive B-spline has been proven to approach the 
interpolation curve (Lin et al. 2004) and has 
second-order continuity, its curvature must 
necessarily be higher than that of natural cu-
bic spline, which results in more pronounced 
oscillations. For the same reasons, oscillations 
were observed in this study for all interpolation 
B-splines of the third and fourth degree, which 
have second and even third, respectively, de-
gree continuity. Because there is no reason to 
assume that the stem curve is necessarily sec-
ond-degree continuous, it is better to avoid the 
risk of oscillation by not using second-degree 
continuous interpolation splines. This agrees 
with Lahtinen (1988) who achieved better re-

Stem-form curves modeled by the natural cubic spline (left) and 2nd degree Bspline (right) based 
on six and nine input points

Figure 5 
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sults using a quadratic spline with only fi rst-
degree continuity.
 Error values were higher for approximation 
splines of the third degree than for those of 
the second degree, and were even higher for 
splines of the fourth degree. The poor per-
formance of approximation splines of higher 
degrees can be explained according to Koskela 
et al. (2006). The greater the degrees of the B-
spline, the more points drive each segment of 
the curve. Therefore the relative infl uence of 
each input point position on the shape of the 
segment decreases and the distance between the 
resulting curve and the input points increases. 
Weight implementation also affects curve ac-
curacy. NURBS that emphasized DBH and that 
had weights set by the averaging method had 
higher residual values than the plain B-spline 
with uniform weight distribution. Weights of 
the input points in NURBS express the relative 

importance of the input points. The negative 
consequence of improving the approach of the 
curve to the emphasized point is a reduction in 
how the other points affect the curve. BS2 with 
uniform knot vector and NUBS2 with averag-
ing knot vector produce very similar results. 
Therefore, the knot vector does not appear to 
be crucial.
 B-splines and NURBS are always smoother 
than the driving polygon (MacCallum & Zhang 
1986) and lie within its convex hull. Therefore, 
the lower part of a stem is always overesti-
mated while the upper part is underestimated. 
With few input points, all of the splines exam-
ined here underestimated the diameters and to-
tal volume. An increase in the number of input 
points improved the representation of the upper 
stem but not of the butt swell curvature. When 
the numbers of points were increased, there-
fore, the upper stem diameter was no longer 

Sectional diameter for four selected six-points splinesFigure 6 

Sectional diameter for four selected nine-points splinesFigure 7 
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underestimated, and the total values were in-
fl uenced by the positive deviation at the lower 
stem. Bias and the volume estimation would 
be more balanced if more points were also in-
cluded at the bottom part of the stem.

Conclusions 

Six interpolation splines and twelve approxi-
mation splines were selected and their suitabil-
ity for stem curve representation was evalu-
ated. The natural cubic spline, which has often 
been used to describe the stem form in forest-
ry research, is inferior to some other splines 
with respect to the accuracy of the predicted 
stem curve and to the bias of diameter predic-
tion and of total volume estimation. The best 
results were obtained with the Catmull-Rom 
spline, which follows the original data closely, 
with no oscillation, with well-balanced diam-
eter errors, and with no systematic error in 
volume prediction. Nearly as well as the Cat-
mull-Rom spline, the interpolation B-spline of 
second degree can represent stem curves, but 
the total stem volume calculated with the use 
of the modeled curve can be underestimated 
even with higher numbers of input points.
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