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Abstract. Solid-state '*C nuclear magnetic resonance (NMR) spectroscopy
was applied to coarse woody debris (CWD) in different stages of decompo-
sition and collected from forest floor of a subtropical, a cool temperate, and
a subalpine forest in Japan. The purpose was to test its applicability to char-
acterize organic chemical composition of CWD of broad-leaved and conifer-
ous trees from different climatic conditions. O-alkyl-C, mainly representing
carbohydrates, was the predominant component of CWD at the three sites,
accounting for 43.5-58.1% of the NMR spectra. Generally, the relative area
under the signals for aromatic-C and phenolic-C, mainly representing lignin,
increased, whereas the relative area for O-alkyl-C decreased, as the decay
class advanced. The relative area under NMR chemical shift regions was
significantly correlated with the chemical properties examined with proxi-
mate analyses. That is, O-alkyl-C and di-O-alkyl-C NMR signal areas were
positively correlated with the volumetric density of CWD and the content of
total carbohydrates. Methoxyl-C, aromatic-C, phenolic-C, carboxyl-C, and
carbonyl-C were positively correlated with the contents of acid-unhydrolyz-
able residues (lignin, tannins, and cutin) and nitrogen. Lignin-C calculated
from NMR signals increased, and polysaccharide-C decreased, with the de-
cay class of CWD at the three study sites. A review of previous studies on
BC NMR spectroscopy for decomposing CWD suggested further needs of
its application to broad-leaved trees from tropical and subtropical regions.
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Introduction

Coarse woody debris (CWD) is a major com-
ponent of forest biomass, serving as a long-
term, large pool of carbon and playing a major
role in the maintenance of forest biodiversity
(Harmon et al. 1986; Stokland et al. 2012).
CWD is characterized by low content of nu-
trients (Holub et al. 2001, Laiho & Prescott
2004), high content of cell wall polymers
such as lignin and holocellulose (Eriksson et
al. 1990), and variable decomposition rates
(Mackensen et al. 2001, Weedon et al. 2009).
Therefore, studying the chemical composition
and the decay dynamics of CWD is crucial for
understanding and predicting the cycling of
carbon and nutrients in forest ecosystems. The
composition of organic chemical compounds
of CWD has often been loosely determined by
proximate analysis. For example, the content
of lignin, a dominant organic component that
often limits the decomposition (Osono 2007),
has been defined as the acid-unhydrolyzable
residues (AUR), but AUR may include other
recalcitrant compounds such as tannins and
cutin (Preston et al. 1997).

Alternatively, recent studies have confirmed
the applicability of solid-state *C nuclear
magnetic resonance (NMR) spectroscopy for
characterizing organic chemical components
of CWD in more detail (Wilson 1987, Bald-
ock & Preston 1995). *C NMR spectroscopy
has been used successfully to understand the
decay dynamics of not only CWD (Preston et
al. 1990, 1998, 2012, McColl & Powers 1998,
Ganjegunte et al. 2004, Strukelj et al. 2012,
2013) but also leaf litter and soil organic mat-
ter (Osono et al. 2008, 2014, Ono et al. 2009,
2011, 2013). Despite its potential applicability,
a few attempts have been made to investigate
with *C NMR spectroscopy the organic chem-
ical composition of CWD at different stages of
decomposition collected in forests of various
climatic conditions.

The purpose of the present study was to char-
acterize the organic chemical composition of
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CWD collected from three forest sites in Japan
using *C NMR spectroscopy. CWD samples
(at various stages of decomposition) of domi-
nant broad-leaved trees from a subtropical and
a cool temperate forest and of conifers from a
subalpine forest were used, as these CWD sam-
ples had already been examined for proximate
fractions and decomposer fungal assemblages
(Fukasawa et al. 2009, 2012, 2014). This al-
lowed comparison of the results of proximate
analysis with those of NMR spectroscopy.

Materials and methods
Study sites and collection of CWD

Samples used in the present study were col-
lected from three sites in Japan: a subtropical
forest (ST) in Okinawa, a cool temperate for-
est (CT) in Kyoto, and a subalpine forest (SA)
on Mt. Ontake, Gifu (Table 1). The three sites
differed in mean annual temperature but re-
ceived similar amounts of precipitation annu-
ally (Table 1). The major tree species included
evergreen broad-leaved trees in ST, deciduous
broad-leaved trees in CT, and evergreen conif-
erous trees in SA. The forest floor mass and its
turnover time (as the ratio of forest floor mass
to leaf fall mass) were in the order: ST < CT <
SA (Table 1).

Coarse woody debris (CWD) was defined
as snags and logs that had diameter > 10 cm
at breast height for snags and at the base for
logs. The decay rate constant (k) of CWD
estimated with the input/accumulation ratio
method (Harmon et al. 1986) was in the order:
ST > CT > SA (Table 1). In the present study,
logs were classified into five decay classes
(Sollins 1982), from the least decayed class 1
to the most decayed class 5, and collected at
three sites in September and December 2004
and in September 2005 (Table 1). Undecayed
wood samples collected from living trees were
denoted as the decay class 0. The log samples
were then used to determine the density and the
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Table 1 Location, climate, vegetation, and properties of the forest floor and CWD in the study sites in

Japan
Site ID ST CT SA
Location®
Latitude N 26°49° 35°18° 35°56°
Longitude E 128°50° 135°43° 137°28’
Elevation (m) 330 660 2050
Site name Kunigami, Okinawa Ashiu, Kyoto Mt. Ontake, Gifu
Climate®
Mean annual temperature (°C) 22 10 2
Annual precipitation (mm) 2456 2495 2500
Climate region Subtropical Cool temperate Subalpine
Vegetation®
Type Evergreen broad-leaved Deciduous broad-leaved Evergreen coniferous

Castanopsis sieboldii,

Dominant tree species . .
p Schima wallichii

Fagus crenata,
Quercus crispula

Abies mariesii, A. veitchii,
Picea jezoensis var.

hondoensis
Forest floor®
Forest floor mass (Mg/ha) 12.0 333 104.6
Leaf fall mass (Mg/ha/yr) 7.95 3.20 3.59
Turnover time (yr) 1.5 10.4 29.1
Coarse woody debris
Sampling December 2004¢ September 2005¢ September 2004¢
CWD mass (Mg/ha) 6.621 25.34f 42.40¢
CWD input (Mg/ha) 0.84" 3.70° 1.54¢
Decay rate constant (/yr)  0.146° 0.126f 0.036¢

Note. *Osono (2015a), ®*Osono (2015b), moder site, “Fukasawa et al. (2012), ‘Fukasawa et al. (2009), *Fukasawa et al.

(2014), *Hishinuma et al. (unpublished data)

contents of total carbohydrates (TCH), acid-
unhydrolyzable residues (AUR), and nitrogen
(Fukasawa et al. 2009, 2012, 2014). Portions
of the log samples used for these proximate
analyses were combined for each site and each
decay class prior to NMR analysis.

NMR analysis

Cross-polarization (CP) magic angle spinning
(MAS) C NMR spectra of the samples were
obtained with a Varian Inova 300 spectrometer
operating at 75.3 MHz under the following
conditions (Gilardi et al. 1995), according to
the method described in Osono et al. (2014).
The pulse repetition time was 3.2 sec, the CP
contact time was 1.5 min, the sweep width
was 50 kHz, and the acquisition time was 40

min. MAS was performed at 4.5 kHz in silicon
nitride rotors with Torlon caps. The chemical
shifts were referenced to the methyl-C signal
(17.3 ppm) of hexamethylbenzene.

The CP-MAS *C NMR spectra were di-
vided into eight chemical shift ranges accord-
ing to the procedure of Preston et al. (1998):
aliphatic (0-47 ppm), methoxyl (47-60 ppm),
O-alkyl (60-95 ppm), di-O-alkyl (95-110
ppm), aromatic (no oxygen attached, 110-140
ppm), phenolic (aromatic carbon with oxygen
attached, 140-165 ppm), carboxyl (165-190
ppm), and carbonyl (190-215 ppm). The rela-
tive area of these chemical shift regions was
calculated for each spectrum as the percentage
of total area. Components of TCH and AUR
(lignin, tannins, and cutin) examined with the
proximate analyses can be assigned into some
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NMR chemical shift regions with different
proportions (Preston et al. 1997). That is, car-
bohydrates can be represented by O-alkyl-C,
di-O-alkyl-C, and phenolic-C; lignin and tan-
nins can be represented mainly by methoxyl-
C, aromatic-C, and phenolic-C but also by
O-alkyl-C; cutin can be represented by aliphat-
ic-C, O-alkyl-C, aromatic-C, and carboxyl-C.

Data analyses

The NMR data were used to calculate lignin-C
and polysaccharide-C (Preston et al. 1998) and
lignin to polysaccharide (L/P) ratio in CWD:

Lignin-C = phenolic-C x 4.5 + methoxyl-C (1)

Polysaccharide-C = 1.2 x (O-alkyl-C — phe-
nolic-C x 1.5) (2)

L/P ratio = Lignin-C / Polysaccharide-C (3)

The ratio of alkyl-C to O-alkyl-C (A/O-A ra-
tio) provides a sensitive index of the decom-
position of soil organic matter (Baldock et al.
1997):

A/O-A = aliphatic-C / O-alkyl-C 4)

Research article

Pearson's correlation coefficients were calcu-
lated for linear relationships between the rela-
tive area of chemical shift regions and four
NMR indices (lignin-C, polysaccharide-C, L/P
ratio, and A/O-A) and the density and contents
of TCH, AUR, and nitrogen.

Results

O-alkyl-C was the predominant component,
accounting for 43.5-58.1% of the NMR spec-
tra of CWD at the three study sites, followed
by methoxyl-C, di-O-alkyl-C, aromatic-C, and
phenolic-C (Fig. 1, Table 2). Generally, the
relative area of the signals for aromatic-C and
phenolic-C increased, whereas the relative area
of O-alkyl-C decreased, with increasing decay
class at the three study sites (Fig. 1, Table 2).
The relative area of carboxyl-C and carbonyl-
C increased, whereas the relative area of di-O-
alkyl-C decreased, with increasing decay class
at ST and SA (Fig. 1, Table 2). The relative
area of methoxyl-C increased with increasing
decay class at SA (Fig. 1, Table 2).

Lignin-C content was generally in the order:
CT < ST < SA and increased with increasing

200 150 100 50 0 200 150
Chemical shift region

Chemical shift region

50 0 200 150 100 50
Chemical shift region

Figure 1 C NMR spectra of CWD in decay classes 0 to 5 at the three sites. ST, subtropical forest; CT, cool
temperate forest; SA, subalpine forest. The numbers following the abbreviated site codes indicate

the decay class
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decay class (Table 2). Polysaccharide-C was
generally in the order: CT > ST, SA and de-
creased with increasing decay class (Table 2).
Consequently, L/P ratio was in the order: CT <
ST < SA and increased with increasing decay
class (Table 2). A/O-A was generally not re-
lated to the decay class (Table 2).

Correlation coefficients were calculated
for the linear relationships between the rela-
tive area of NMR chemical shift regions and
NMR indices versus the density and contents
of TCH, AUR, and nitrogen of CWD (Table 3).
In general, the density and TCH contents were
significantly and positively correlated with
O-alkyl-C, di-O-alkyl-C, and polysaccharide-
C, and significantly and negatively correlated
with methoxyl-C, aromatic-C, phenolic-C,
carboxyl-C, carbonyl-C, lignin-C, and L/P ra-
tio (Table 3). In contrast, the contents of AUR
and nitrogen were significantly and positively
correlated with methoxyl-C, aromatic-C, phe-
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nolic-C, carboxyl-C, carbonyl-C, lignin-C,
and L/P ratio, and significantly and negatively
correlated with O-alkyl-C, di-O-alkyl-C, and
polysaccharide-C (Table 3).

Discussion

The relative area of chemical shift regions and
the predominance of O-alkyl-C in the NMR
spectra of CWD at the three sites (Fig. 1, Ta-
ble 2) was consistent with previous reports on
CWD (reviewed in Table 4), as well as on leaf
litter (Osono et al. 2008, 2014, Ono et al. 2009,
2011, 2013). Lower values of relative area of
aromatic-C and phenolic-C and higher values
of aliphatic-C in broad-leaved than in conifer-
ous trees (Fig. 1, Table 2) were consistent with
the previous reports. Those previous studies
also showed a decrease in the relative area of
O-alkyl-C, a concomitant increase in the rela-

Table 3 NMR chemical shift regions and indices that were significantly (P < 0.05) correlated with the den-
sity and the contents of total carbohydrates (TCH), acid-unhydrolyzable residues (AUR), and nitro-
gen of CWD at least at one of the three study sites. Correlation coefficients for linear relationships
not shown in this table were not statistically significant (P > 0.05). Numbers indicate the study site
where the significant correlation was found: 1, ST; 2, CT; 3, SA

Density TCH

AUR

Nitrogen

Positive correlation

Methoxyl?
Aromatic'>?
Phenolic'>?

Methoxyl?
Aromatic'?*3
Phenolic'??

_ 123 _ 123

O. alkyl s O alkyl 3 Carboxyl'? Carboxyl'?

di-O-alkyl di-O-alkyl" 3 3

Polysaccharide-C'** Polysaccharide-C'** Carbonyl* Carbonyl®
Lignin-C'*3 Lignin-C'?3
L/P ratio'*? L/P ratio'*?
A/O-A!

Negative correlation

Methoxyl Methoxyl®

Aromatic'*? Aromatic’**

Phenolic!23 Phenolic Tyl1:23 Tkyl!
enolic'* Carboxyl'3 O-alkyl'* O-alkyl"
Carboxyl' Carbonyl"* di-O-alkyl'? di-O-alkyl'%?
Carbony!’ Lignin-C'23 Polysaccharide-C'** Polysaccharide-C'-**

i (123 s
ngmn.C L/P ratio'*?
L/P ratio'*?
A/O-A!
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tive area of aromatic-C and phenolic-C, and
similar patterns of changes in NMR indices
according to the decay class or the period of
decomposition (Table 4).

The contents of lignin-C, polysaccharide-C,
L/P ratio, and A/O-A of CWD in the present
study are within the range found in the pre-
vious NMR studies of CWD (Table 4). The
lower lignin-C and higher polysaccharide-C in
broad-leaved than in coniferous trees (Table 2)
generally agreed with those of previous reports
(Table 4). The increase of L/P ratio appears a
general phenomenon in decomposing CWD
across climatic conditions and tree species
(Tables 2 and 4). A/O-A has been proposed as
a sensitive index of the extent of decomposi-
tion of soil organic matter that increases as
O-alkyl-C is transformed to alkyl-C (Baldock
et al. 1997, Rosenberg et al. 2003). However,
A/O-A of CWD in the present study was gen-
erally a poor indicator of decomposition, since
A/O-A was not significantly related to the de-
cay class or the relative density of wood (Ta-
ble 3). Previous studies found either variable
(Preston et al. 1998; Ganjegunte et al. 2004) or
increasing patterns (Strukelj et al. 2012, 2013)
of A/O-A with the decomposition of CWD
(Table 4).

The relative area under NMR chemical shift
regions was generally significantly correlated
with the chemical properties examined with
proximate analyses, regardless of the study
site (Table 3). The general decrease of some
components with the decomposition and the
concomitant increase in the others indicated
the faster net decomposition of the former than
the latter and/or the net transformation of the
former into the latter. The positive correlations
observed here of lignin-C and AUR with the
decay class (Table 3) are consistent with the
results of Preston et al. (1997) and suggest that
lignin is a major component of AUR in wood.
The loss of O-alkyl-C and polysaccharide-C
was associated with a loss of carbohydrates,
such as holocellulose (Wilson et al. 1983). The
positive association of lignin-C with nitrogen

Application of *C NMR spectroscopy ...

content in decaying CWD (Table 3) may be
due to the formation of nitrogenous lignin-like
substances as secondary compounds, as sug-
gested by Berg (1986) and Takeda and Abe
(2001).

The patterns of change in organic chemical
composition of decomposing CWD observed
in the present study were primarily influenced
by three factors: climatic conditions, wood
species and quality, and decomposer fungi
(Harmon 1986). Of these, the difference in
decomposer fungi with different ligninolytic
and cellulolytic activities partly accounted
for the different patterns of organic chemical
components in CWD among the study sites.
In fact, CWD of broad-leaved trees at ST and
CT harbored predominantly ligninolytic fungi
(Fukasawa et al. 2009, 2011, 2012), whereas
Fukasawa et al. (2014) encountered both ligni-
nolytic and non-ligninolytic fungi on conifers
at SA.

Conclusions

The present study demonstrates the applica-
bility of solid-state *C NMR spectroscopy to
CWD at different stages of decomposition col-
lected from forests of different climatic condi-
tions in Japan. The results of *C NMR spec-
troscopy were generally compatible with those
of proximate analysis and had a potential to
provide useful indicators of long-term decom-
position of CWD. The higher lignin content
and the higher increment of lignin content with
the decay class at SA than at ST and CT may
be attributed to wood species (i.e., conifers),
the cooler climatic condition, or both. The
relative importance of climatic condition and
wood species cannot be divided in the present
study, however, because of the pseudo-repli-
cation of experimental design. The previous
studies have tended to be performed on conif-
erous trees from boreal and temperate forests
(Table 4). Thus, further efforts should be paid
to the application of *C NMR spectroscopy to
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decomposing CWD of broad-leaved trees from
tropical and subtropical regions and of the sin-
gle tree species distributed across different cli-
matic regions.
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