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Abstract Tree detection is the first step in the appraisal of a forest, especially 
when the focus is monitoring the growth of tree canopy. The acquisition 
of annual very high-resolution aerial images by the National Agriculture 
Imagery Program (NAIP) and their accessibility through Google Earth 
Engine (GEE) supports the delineation of tree canopies and change over 
time in a cost and time-effective manner. The objectives of this study are 
to develop an automated method to detect the crowns of individual western 
Juniper (Juniperus occidentalis) trees and to assess the change of forest 
cover from multispectral 1-meter resolution NAIP images collected from 
2009 to 2016 in Oregon, USA. The Normalized Difference Vegetation 
Index (NDVI), Normalized Difference Water Index (NDWI), and Ratio 
Vegetation Index (RVI) were calculated from the NAIP images, in addition 
to the red-green-blue-near infrared bands. To identify the most suitable 
approach for individual tree crown identification, we created two training 
datasets: one considering yearly images separately and one merging all 
images, irrespective of the year. We segmented individual tree crowns 
using a random forest algorithm implemented in GEE and seven rasters, 
namely the reflectance of four spectral bands as recorded by the NAIP 
images (i.e., the red-green-blue-near infrared) and three calculated indices 
(i.e., NDVI, NDWI, and RVI). We compared the estimated location of the 
trees, computed as the centroid of the crown, with the visually identified 
treetops, which were considered as validation locations. We found that tree 
location errors were smaller when years were analyzed individually than 
by merging the years. Measurements of completeness (74%), correctness 
(94%), and mean accuracy detection (82 %) show promising performance 
of the random forest algorithm in crown delineation, considering that only 
four original input bands were used for crown segmentation. The change in 
the calculated crown area for western juniper follows a sinusoidal curve, 
with a decrease from 2011 to 2012 and an increase from 2012 to 2014. The 
proposed approach has the potential to estimate individual tree locations and 
forest cover area dynamics at broad spatial scales using regularly collected 
airborne imagery with easy-to-implement methods.
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Introduction

To make informed management and 
conservation decisions about changes in 
forested landscapes, high spatial resolution 
data is desired (Gatziolis et al. 2015). Such 
images from airborne or spaceborne platforms 
allow identification of individual trees, which 
are the fundamental measurement unit on 
which the forest management is based on 
(Wang et al. 2004).  Therefore, in the last two 
decades many applications of remote sensing 
in forestry have focused on tree-level forest 
inventory (Meyer & Beucher 1990, Popescu et 
al. 2003), which provides beneficial outcomes 
compared to conventional forest inventory 
practices, particularly because they are less 
expensive for large areas. Among remote 
sensing methods focused on forest monitoring 
and management, delineation of individual tree 
crowns and measuring canopy cover are central 
to estimation of aboveground biomass (Hyyppa 
et al. 2001, Krofcheck et al. 2016) and tree 
stem growth, and identification of gaps in forest 
stands (Vepakomma et al. 2008).
 Traditionally, remote sensing based forest 
inventory requires a large amount of data, a 
considerable storage capacity that ensures fast 
transfer of information, and time-consuming 
computations (Butler 2009). However, open-
access Earth observation data catalogs and 
associated software packages now provide 
a useful interface to map land and forest 
dynamics (Koskinen et al. 2019). In particular, 
cloud-based computing resources, such as 
Google Earth Engine (GEE), provide tools for 
monitoring land cover changes inexpensively 
(Weiss et al. 2015, Gorelick et al. 2017a). 
There are various types of imagery available 
in GEE, including Landsat 8, Sentinel 1 and 
2, and MODIS (Moderate Resolution Imaging 
Spectroradiometer). However, most of the 
publicly available satellite data cannot be used 
for the detection of individual tree crowns, as 
they do not have sufficient spatial resolution. 
Nevertheless, the GEE and other public 

platforms provide data with sufficient spatial 
resolution to delineate crowns of individual 
trees, such as the images acquired by the United 
States Department of Agriculture National 
Agriculture Imagery Program (NAIP). NAIP 
provides 1-meter resolution true-color images 
(i.e., blue, green, and red wavelength bands) 
acquired during the growing season across 
the continental United States. NAIP began 
in 2003 with a five-year acquisition cycle 
but since 2009, the cycle shortened to three-
years. In 2009, a near-infrared band (NIR) was 
included, creating the possibility of measuring 
commonly used ratio-based vegetation indices 
(Earth Observing System 2020).
 GEE provides a suite of tools for pixel-
based classification, including supervised 
classification algorithms such as random forest 
(RF) (Breiman 2001), naïve Bayesian, and 
support vector machine (Boser et al. 1992, 
Cortes & Vapnik 1995), which are effective 
tools for mapping heterogeneous landscapes 
(Congalton 1991, Hansen et al. 2013, Di Palma 
et al. 2016). Random forest, in particular, has 
proven to be successful for identification of 
various types of land cover classes (Joelsson 
et al. 2006) and enjoys widespread ease of use 
(Lantz 2019). Monitoring forest vegetation 
was the subject of many studies that used the 
GEE for analysis, some focused on divers 
of change (Huang et al. 2020), some on 
forest fire (Bar et al. 2020, Barboza Castillo 
et al. 2020), some on productivity (Yin et al. 
2020). However, all supervised classification 
algorithms remain sensitive to training data 
selection and sampling (Foody et al. 1995), 
particularly for long time series analysis when 
reflectance can vary significantly between 
observations (Ismail Fawaz et al. 2019).
 The current forest inventories using imagery 
are focused not only on classification of the land 
cover but also on identification of individual 
trees, represented by their crown (Bergseng et 
al. 2015, Yin & Wang 2016). High-resolution 
images using only three bands or multiple 
bands were proven to be instrumental in tree 
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crown delineation (Sapkota & Liang 2018, 
Weinstein et al. 2020). When elevation data 
are added to spectral data, the individual 
tree crown segmentation was significantly 
improved (Wang et al. 2019). The ability to 
delineate individual trees is further enhanced 
if the species tend to grow isolated, like the 
western juniper (Schriver 2018). 
 The crown coverage provided by individual 
trees is of particular importance in areas that 
exhibited a significant change in land cover, 
such as from agriculture to urban, or forest to 
pasture, or for documenting deleterious effects 
of invasive or noxious species. In central and 
eastern Oregon, USA, native western juniper 
(Juniperus occidentalis) has increased its area 
almost 10 times since 1850.  Western juniper 
has a major impact on the landscape’s water 
availability, particularly in catchments that have 
peak accumulations of snow water and earlier 
snowmelt (Kormos et al. 2017). Consequently, 
juniper alters not only the vegetation but also 
the fauna (Miller & Rose 1995, Miller et al. 
2005). Major restoration efforts have sought 
to ensure that the water table remains viable 
for natural vegetation and streams and that 
the habitat for wildlife species remains within 
an acceptable range of variability. To support 
the success of any restoration 
initiative, changes in the 
amount and location of juniper 
must be known. Therefore, 
the present study has three 
objectives: 1) Automatically 
detect individual western 
juniper crowns, 2) Estimate 
forest cover change over a 
period of eight years, and 
3) Assess the impact of 
estimation methodology on 
the findings, particularly the 
effect of training data on the 
estimation of juniper area.
 The objectives of the study 
align with the restoration 
efforts carried out by various 

agencies on the land encroached by western 
juniper. Considering the large area occupied 
by juniper, the automatic identification of the 
resource is mandatory for gauging human and 
equipment efforts. Furthermore, the urgency of 
the restoration is guided by the concentration 
of the juniper across the landscape. Finally, 
the accuracy of the estimated values depends 
on the method used in computation (Seppelt & 
Richter 2005, Paun et al. 2020); therefore, we 
will implement two approaches and select the 
one with lesser errors.

Materials and Methods

Study area and image acquisition

The study area of this project covers a surface 
of 4 km2 (i.e., a square with the side of 2 km), 
which is close to Fossil, Oregon, USA (Figure 
1). The land is owned by the US Department 
of the Interior and is managed by the Bureau 
of Land Management. The area under 
consideration is managed mainly for recreation, 
with minimum disturbance, except the access 
roads. The study region has a Mediterranean 
climate with an average annual precipitation 
of 387 mm and 152 mm of average annual 

     Figure 1 Map of the study area in Fossil, Oregon. 
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snowfall. The average temperature of the study 
area ranges from 5.0˚C to 17.8˚C annually 
(U.S. Climate Data, 2021). To identify western 
juniper, we selected two subregions for training 
and testing (Region 1: centered at 120.11948° 
longitude and 45.00541° latitude) and for 
validation (Region 2: centered at 120.15902° 
longitude and 44.98940° latitude) of the 
classifi cation algorithm. Within the training 
area, we selected 300 trees (i.e., 60 diff erent 
trees for each year), whereas, for testing, we 
selected 47 trees (i.e., the same for all the 
years) identifi ed on all NAIP images (Figure 2). 
The trees were selected such that only juniper 
were included, and the crown delineation was 
obvious, which confi ned the training data only 
to isolated trees. The selection of trees without 
intersecting crowns ensured that the training 
is executed on data without error; therefore, 
reducing the commission errors.
 To identify the junipers, we used NAIP 
images acquired during the summer and early 
fall (i.e., from June to September) of 2009, 
2011, 2012, 2014, and 2016. The sensor type 
varied among the years, but on average, the 
recorded wavelength ranges for the four bands 
are 420-492 nm (blue), 533-587 nm (green), 
604-664 nm (red) and 833-920 nm (near-

infrared).
 Digital image analysis has the ability to 
include diff erent indices that support the 
detection of features of interest (Gandhi et 
al. 2015). Many studies supported the usage 
of several indices to characterize vegetation, 
such as the Normalized Diff erence Vegetation 
Index (NDVI), Normalized Diff erence Water 
Index (NDWI), Ratio Vegetation Index (RVI), 
Diff erence Vegetation Index, Perpendicular 
Vegetation Index, and Soil-Adjusted Vegetation 
Index (Xue &Su 2017). Among them, NDVI is 
the most widely used (Bhandari et al. 2012) and 
captures information on both photosynthesis 
and cell structure using red and near-infrared 
refl ectance: chlorophyll from leaves absorbs 
visible light during photosynthesis while 
the cell structure of the leaves refl ects near-
infrared light. NDWI has also been proven to 
be useful for vegetation monitoring since it is 
sensitive to changes in liquid water content 
of vegetation canopies (McFeeters 2013a) as 
well as green vegetation, dry vegetation, and 
soils (Gao 1996). RVI, which is also sensitive 
to the chlorophyll content of leaves (Jordan 
1969, Quan et al. 2011), has been used for 
monitoring and estimating green biomass.

Figure 2 The two regions used in the study: a. training area (colors show diff erent fl ight years), b. validation 
area.
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Following the studies of Bhandari et al. (2012), 
(McFeeters 2013b), and (Jordan 1969, Quan et 
al. 2011), we calculated three indices proven to 
detect trees during the growing season: NDVI 
(Eq. 1), NDWI (Eq. 2), and RVI (Eq. 3):

where: NIR is the refl ectance in the near-infrared 
band, commonly from 700 nm to 1100 nm;
Red is the refl ectance in the red band (from 635 
to 700 nm); 
Green is the refl ectance in the green wave 
band, centered at 540 nm.

Image classification

To identify western juniper crowns from 
NAIP images, we performed a supervised 
classifi cation with the RF algorithm (Breiman 
2001), as implemented in the GEE. The RF 
classifi er was implemented following the 
recommendations of Chicco (2017) by using 
70% of the data for training and 30% for 
testing from data collected in Region 1. To 
assess the impact of the 
training approach on the 
results, we created two 
training datasets, one using 
yearly images separately 
(subsequently referred 
to as Method 1) and 
one merging all images, 
irrespective of image years 
(subsequently referred to 
as Method 2) (Figure 3). 
An average of 206 training 
areas were selected for each 
year. We chose fi ve classes 
representative of the study 
area: grass, barren (i.e., 
exposed soil and rocks), 
roads, shadow, and trees 

(i.e., western juniper). The fi ve classes were 
selected to reduce the variability within classes 
while increasing the diff erences 
between classes. We followed the 
recommendations of Comber et al. (2012), 
which considered the shadow of trees as noise, 
and created a new class called “shadow”, 
separate from the tree crown.

Study methods

In total, 303 crowns were visually identifi ed, 
212 of which were used to train the RF 
algorithm classifi er. The parameters defi ning 
the RF were chosen through trial and error, 
with the emphasis being placed on the number 
of decision trees and the seeds.  We found 
that 100 decision trees and 19 seeds while 
keeping all other parameters at the default 
values suggested by the GEE (e.g., mean leaf 
population, bag fraction, max nodes, variables 
per split), supplied the most accurate results 
for the testing and validation trees. The 
classifi ed images were further enhanced using 
the convolutions. The GEE provides a set of 
convolution algorithms (Gorelick et al. 2017b), 
with kernels of diff erent shapes and weights, 
which we used for increasing the separation 

      Figure 3 The structure of the two methods used to create the training data.
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between the diff erent classes. We tried various 
kernels, including square, circle, and gaussian, 
and diff erent weights, and we found that the 
images processed with a Gaussian kernel 
having the radius 0.9, the sigma 1, and the 
values were normalized to add up 1 led to 
results with the smallest number of errors.  
We further enhanced the convoluted images 
with two morphological operations, namely 
dilation and erosion.  Morphological dilation 
improves the visibility of the objects, while 
morphological erosion assists in removing the 
islands and small objects within the image. 
Finally, the delineation of individual tree was 
executed by converting the tree class from 
the raster to vector, which contains only the 
individual tree canopies (Figure 4).

Accuracy Assessment 

To assess the accuracy of tree detection, we 
used three metrics similar to Zhan et al. (2005) 
and Zhang et al. (2019): completeness (Eq. 4), 
correctness (Eq. 5), mean accuracy detection 
(Eq. 6). In addition to the three metrics, we 
calculated the number of omitted trees (i.e., 
false negative) and the number of committed 

trees (i.e., false positive). The location of 
a tree was computed as the centroid of the 
predicted crown. We considered that a tree 
whose location is estimated inside the crown 
of a visually identifi ed tree was predicted 
accurately. Using the previously mentioned 
assumptions, we estimated location bias (Eq.7) 
and precision (Eq. 8), similar to (Hogg et al. 
2012).

where:  Nmatch refers to the number of found 
reference trees; 
Nreference is the total number of reference trees;
Nsegmented is the total number of trees segmented;
Locationsegmented is the predicted easting or 
northing;
Locationreference is the visually interpreted 
easting or northing.

Figure 4 The fl owchart of the important steps applied in this study.
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Results and Discussion

Individual tree crown detection

RF performed better when the individual 
years were used for training compared to 
the merged years (Table 1). Even though 
we selected the same time period and 
sampling region, the spectral signature of 
various classes tended to vary between 
years, possibly due to diff erent sun angles, 
sensor performance, and image noise 
(Lillesand et al. 2015). The tree crown 
identifi cation method that provided the 
results with the largest completeness, 
correctness, and MAD was based on a 
Gaussian kernel (Table 1), which was 
subsequently used throughout the study.
 The testing of the RF algorithm on the 
47 validation trees (Figure 5) revealed 
that the number of segmented trees 
(Nmatch) matched unevenly with reference 
trees (Nreference), with the 2011 being prone 
to omission and commission errors 
(Table 2), irrespective of the method. 
Regardless of the year, Method 1 
outperformed Method 2 by at least 
13% (i.e., Nmatch = 35 vs. Nmatch = 27). 
For the 2011 and 2012 years, Method 
2 exhibited a larger commission error 
than Method 1, with 20 extra trees 
rather than 12 trees, respectively. The 

commission error was higher, possibly due to 
the eff ects of shadow (Figure 6). 

Table 1 Summary of training and testing tree accuracies. Individual years refer to Method 1, and Merged 
years refer to Method 2.

Measure
Individual years Merged years

2009 2011 2012 2014 2016 2009-2016
Completeness 
Training 1.00 1.00 1.00 1.00 1.00 0.98
Testing 0.87 0.66 0.88 0.82 0.89 0.71
Correctness
Training 1.00 1.00 0.98 1.00 1.00 0.99
Testing 1.00 0.72 0.75 0.95 0.91 0.76
MAD 
Training 1.00 1.00 0.99 1.00 1.00 0.98
Testing 0.93 0.70 0.81 0.88 0.89 0.75

    Figure 5 Classifi ed image and the testing trees.
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Table 2 Summary statistics of tree detection on the validation area imagery from 2009 to 2016.

Measure
Method 1 Method 2
2009 2011 2012 2014 2016 Avg. 2009 2011 2012 2014 2016 Avg.

Nreference 47 47 47 47 47 47 47 47 47 47 47 47
Ncommission 3 3 4 0 0 2 4 3 3 5 3 4
Nomission 3 20 25 6 7 12 19 38 11 16 17 20
Nmatch 44 27 22 41 40 35 28 9 36 31 30 27
Nsegmented 47 30 26 41 40 37 32 12 39 36 33 30
Compl. (%) 94 57 47 87 85 74 60 19 77 66 64 57
Correct (%) 94 90 85 100 100 94 88 75 92 86 91 86
MAD (%) 94 70 60 93 92 82 71 31 84 75 75 67

Depending on the direction of the sun, tree 
branches could appear as separate trees
(Comber et al. 2012). The estimated correctness 
for each year was substantially higher for 
Method 1, particularly for 2009, 2014, and 2016, 
which showed the correctness values of 94% 
and 100% (Table 2). However, observed values 
from 2011 and 2012 reported slightly lower 
correctness values, at most 90%. Consequently, 
the algorithm performance depends on the 
texture, shadow, tone or color, size, and shape 
(Gibson 2014, Svatoňová & Šikl 2017, Vahidi 
et al. 2018).
 The lowest estimated completeness was 
observed in Method 2 (19% for 2011 imagery), 

while the highest estimated completeness was 
reported by Method 1 (94% for 2009 imagery). 
The calculated average completeness for 
Method 1 is 74%, which is 1.3 times higher 
than the average completeness measured with 
Method 2 (57%). The estimated average MAD 
is greater for Method 1 (i.e., 82%) compared 
with Method 2 (i.e., 67%) with the 2009 image 
showing the highest value (i.e., 94%). Overall, 
the accuracy assessment measures suggest that 
NAIP imagery acquired in 2011 and 2012 did 
not perform well, probably because of the low 
contrast of each set of images (Vahidi et al. 
2018), due to various eff ects such as haze and 
smoke (Poznanovic et al. 2014). The estimated 
average location bias, expressed in easting and 
northing coordinates, for Method 1 were 0.16 m 
and -0.22 m, respectively, whereas for Method 
2, the predicted northing had a southern bias 
of -0.11 m, and the easting was westward 0.05 
m (Table 3). The estimated average positional 
accuracy was higher for the Method 1 (i.e., 
RMSEeasting = 0.90 m and RMSEnorthing = 1.14 
m) compared to Method 2 (i.e., RMSEeasting = 
1.08 m and RMSEnorthing = 1.26 m) (Table 3). 
The average Euclidean distance between the 
estimated crown centroid and the location of the 
validation trees was lower for Method 1 (1.45 
m) than for Method 2 (1.68 m). The estimated 
precision for each year was higher for Method 
1, specifi cally in 2009, 2014, and 2016, which is 
less than the resolution of the images, indicating 
the potential use of the RF algorithm to detect 
trees based on the NAIP imagery.

Figure 6 Impact of shadow and adjacent trees on 
individual tree crown delineation.
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Table 3 Summary of bias and precision values. Avg. refers to the average and Euc.distance refers to the 
Euclidian distance between the centroid of segmented crown and the location of the validation 
trees.

Measure
Method 1 Method 2
2009 2011 2012 2014 2016 Avg. 2009 2011 2012 2014 2016 Avg.

Bias (m)
East -0.08 0.49 -0.12 0.38 0.11 0.16 -0.52 -1.02 0.11 0.66 0.23 -0.11
North -0.36 -0.22 -0.46 -0.28 0.23 -0.22 -0.46 -0.25 0.31 0.31 0.33 0.05
Precis (m)
East 0.71 1.08 1.06 0.79 0.88 0.90 0.99 1.41 0.68 1.14 1.16 1.08
North 0.90 1.49 1.33 0.98 0.98 1.14 1.07 1.07 1.53 1.30 1.33 1.26
Euc. Dist. (m) 1.14 1.85 1.71 1.25 1.32 1.45 1.46 1.77 1.68 1.72 1.77 1.68

However, visual interpretation of remotely 
sensed images involves a signifi cant amount 
of subjective decisions associated with human 
factors, such as experience, expertise, and 
onsite knowledge (Hall 2003, Svatonova 2016, 
Hoff man & Markman 2019). Hence, prior 
knowledge and onsite information (actual 
reference data, coordinates) could increase the 
accuracy of tree detection and location.

Forest cover change

The western juniper has a signifi cant impact 
on hydrological cycles and on the wildlife 
habitat. Therefore, accurate estimation of 
the area covered with western juniper is 
important for the restoration eff orts. Due to 
the lower overall testing 
accuracy of Method 2, 
we assessed the temporal 
changes in crown cover 
using only Method 1. 
The crown area exhibits 
a sinusoidal pattern 
through time (Figure 7), 
with an increase from 
2009 to 2011, followed 
by a decrease from 2011 
to 2012, then an increase 
from 2012 to 2014.
 The decrease in canopy 
cover for 2012, 2014, 
and 2016 compared 
with 2011 is due to the 

signifi cant increase in shadow (Figure 5). 
The diff erence between shadow and canopy 
is probably due to the low elevation of the 
sun when the images were acquired, which 
unevenly aff ected the refl ectance across the 
canopy. The sides facing the sun refl ected 
more radiance, whereas the obstructed part 
of the crown refl ected less, making it more 
similar to the shaded ground. The distinction 
between the shadow and canopy aff ects the 
accuracy of the estimated forest cover, likely 
underestimating the actual coverage, as 
seen in Figure 6. Nevertheless, even with a 
smaller than real surface, the analysis shows 
an increase in the area of western juniper, 
pointing toward the urgency of restoration 
eff orts.

Figure 7 Estimated forest cover change from 2009 to 2016 using method 1.
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Conclusion

The present study proposed an automated 
approach to detect the location of individual 
trees and canopy area of western juniper using 
1-m resolution NAIP imagery available in 
GEE. The tree and crown detection algorithm 
was trained with two methods: one using 
individual years and one using all years 
combined. The estimated overall training 
and testing accuracies were higher when the 
training was carried out on individual years 
rather than on all years combined. Therefore, 
the classification should be implemented 
using annual information to avoid inclusion 
of spectral variation due to the sensor type, 
weather, atmospheric condition, and position 
of the sun with respect to the area. Our results 
based on training the RF algorithm with yearly 
data showed encouraging performance with 
respect to completeness, correctness, and 
MAD. As in most remote sensing analyses, 
the classification of tree canopies not only was 
tedious but also iterative, as many runs were 
executed to properly identify the importance 
of the attributes describing the landscape, 
including canopy shadow, texture, and tone. 
Even when a separate class was introduced 
for shadow, the tree detection did not perform 
well, especially in 2011 and 2012, potentially 
due to tone and texture. The reduced accuracy 
in tree detection was reflected by the lower 
correctness, completeness, and MAD in 2011 
and 2012. The estimated tree location for 
Method 2 indicated southern bias in latitude 
direction and westward bias in longitude 
direction, whereas an inverse relationship 
was observed for Method 1. Many parameters 
play a significant role in tree identification 
and location using RF algorithm (e.g., the 
ratio of training/validation data, the number 
of decision trees, kernel method, and radius). 
Future studies should try to preprocess the 
images to remove or reduce the impact of 
shadow. Finally, because of its simplicity, 
the algorithm presented in this study can be 

extended to large areas with limited effort. 
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