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Abstract. Automatic identification of forest patches disturbed by the spruce 
bark beetle Ips typographus L. is crucial to reveal the rules of following 
bark beetle outbreaks on the landscape scale. Landsat imagery provides 
free resources to outline past and present gradations of bark beetle out-
breaks (BBOs). The objective of this study is to identify the most sensitive 
vegetation index through different method of vegetation index differenc-
ing to identify past and actual bark beetle outbreaks. Six Landsat Thematic 
Mapper (TM) images, from 2005–2009 and 2011, were converted into se-
lected vegetation indices (VIs) sensitive to conifer tree health in a Norway 
spruce–dominated forest in the High Tatra Mountains. The Vegetation Con-
dition Index (VCI), Moisture Stress Index (MSI), Normalised Difference 
Moisture Index (NDMI), Normalised Difference Vegetation Index (NDVI), 
Disturbance Index (DI) and Changed Disturbance Index (DI´) were calcu-
lated separately for every year, and the methodology of vegetation index 
differencing was applied to multiple two-year time periods (2005–2006, 
2006–2007, 2007–2008, 2008–2009 and 2010–2011), thus producing the 
Changed Vegetation Index (ΔVI). A set of thresholds was established on 
ΔVI to classify disturbed and undisturbed forest due to BBOs; the sensi-
tivity of different VIs to identify BBO was equally evaluated. The highest 
accuracies of classifications were reached in 2007 and 2011 (kappa index 
of agreement >70% and >40%, respectively), which were characterised 
by an epidemic phase of a BBO. All selected VIs were highly sensitive to 
BBOs, except for NDVI. The stable threshold value for change detection 
is not widely applicable to detect past forest disturbances caused by bark 
beetles, however. Finally, for further research of the epidemic phases of 
BBOs, we recommend the utilisation of the vegetation indices VCI, MSI and 
NDMI to detect BBOs because of their simplicity and easy interpretability.
Keywords Ips typographus L., remote sensing, change detection, vegetation 
index differencing.
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Introduction

Bark beetles, which cause tree mortality, are an 
important means of disturbance in spruce (Pi-
cea abies [L.] Karst.) forests in Central Europe 
(Schelhaas et al. 2003, Svoboda et al. 2010, 
Svoboda et al. 2012). After an extensive gale 
disaster in 2004, there was a large bark beetle 
outbreak in the Tatra Mountains (Nikolov et al. 
2014). The outbreak was eruptive in southern-
facing slopes of the central part of the moun-
tains. Almost all mature spruce stands were 
damaged. Bark beetle outbreaks (BBOs) are 
caused mainly by Ips typographus L. Although 
aerial photography is widely used to monitor 
BBOs, this approach is limited by budget con-
straints and by the timing of actual outbreaks. 
Landsat imagery provides broad potential, 
not only for the actual mapping of BBOs, but 
equally for their historical mapping. The Land-
sat data archive (available at http://glovis.usgs.
gov/), which dates to the 1970s, is currently 
free to the public (Wulder & Coops 2013). It 
is a key resource for monitoring and identify-
ing changes in forests (Vogelmann et al. 2009), 
including those caused by disturbances (Zhu et 
al. 2012, Wulder & Coops 2013) such as bark 
beetle infestations (Wulder et al. 2005). 
 BBOs can be monitored by utilising single 
Landsat imagery acquired during the vegeta-
tion period, mostly in the autumn (Kennedy 
et al. 2010). The application of a time series 
of Landsat images reveals not only informa-
tion about the changed area, but also gradual 
ecosystem changes (Vogelmann et al. 2012). 
Landsat data of high resolution (30 × 30 m), 
via its temporal frequency, provide a rich 
source for monitoring BBOs, not only in years 

of actual outbreaks, but also to assess previ-
ous outbreaks and to evaluate stand vigour in 
order to predict bark beetle–induced mortality 
(Coops et al. 2009). 
 There is no single, generally applicable de-
tection technique for monitoring changes to 
forests, as different algorithms need to be com-
pared to find the best technique for a specific 
purpose (Lu et al. 2004). The classification of 
Landsat imagery is performed using single-
date classifications, or by applying multiple 
years to forest classifications. In forest condi-
tions, the reflectance of one Landsat pixel of 30 
× 30 m resolution is formed by the reflectance 
of all elements occurring in that pixel, includ-
ing green and dead trees, shadows, understory 
vegetation, rocks and other elements.
 While this amalgamation of elements could 
make applications of single-date classification 
of BBOs difficult (Lefsky & Cohen 2003), a 
multi-date approach that focusses on relative 
distances in the spectral response between two 
images’ dates can detect subtle changes, such 
as damaged trees; in other words, if the first 
image date was selected at a time prior to the 
infestation, and a later date was selected when 
both the infestation and the number of infested 
trees had increased (Wulder et al. 2006). The 
other advantage is that intermediate steps in 
single-date forest mapping are not required; 
the potential errors associated with single-
date classifications are thus eliminated (Bucha 
& Stibig 2008). The multi-date approach can 
be applied to the identification of bark beetle 
damage in long time series (Goodwin et al. 
2008, Meddens et al. 2013) or to the utilisation 
of a few Landsat images to identify changes 
from time T to time T+n, without specifying a 
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time interval. Landsat imagery has been suc-
cessfully used in forest cover classification and 
disturbance mapping (overall accuracy of 73% 
and 86%, respectively) over the whole Car-
pathian range within five-year intervals from 
1985 to 2010 (Griffiths et al. 2014). 
 Jakuš et al. (2003) conducted BBO identifica-
tion in the High Tatra Mountains in 2003 using 
Landsat imagery by the Vegetation Index (VI) 
method. They identified BBOs as ‘changed’ at 
different levels of standard deviations (SDs). 
The best index for BBO identification was the 
Vegetation Condition Index (Jakubauskas & 
Price 1997) at the level of the mean -1.75 . SD.  
Jakuš and colleagues only visually assessed 
the accuracy of the classification procedure, 
however. 
 In this paper, we follow the principles of 
the preliminary study of Jakuš et al. (2003) 
in BBO detection using VI differencing. The 
first aim of the study was to identify the best 
VIs, derived by VI differencing to characterise 
BBOs for multiple two-year time periods. The 
classified Changed VI (∆VI) was compared to 
a reference set of aerial infrared photography. 

The most appropriate VI among the six select-
ed VIs was determined using kappa statistics 
and Receiver Operator Characteristics (ROC) 
curves. The second aim of the study was to 
evaluate if this threshold value remained un-
changed from one time period to another, and, 
accordingly, to assess whether this threshold 
value can be applicable for mapping historical 
BBOs without using a reference dataset such 
as infrared aerial photography.

Material and methods

Study area

The study area  (Figure 1) is situated on the 
southern-facing slopes of the highest range 
of the Carpathian Mountains - the High Tat-
ra Mountains, in Slovakia. The study area 
is localised in the forest compartments of 
Tatranská Lomnica and Kežmarské Žľaby 
(49°11’15.95”N, 20°14’42.63”E), with a to-
tal area of 3,800 ha. The forested area rang-
es from 1,100 to 1,700 metres a.s.l. Planted 

Study area on the southern slopes of the High Tatra Mountains, Slovakia. 
A bark beetle outbreak from 2011 (BBO, red) was mapped by visual 
interpretation of aerial photography

Figure 1 
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spruce monocultures at areas below 1,100 m 
a.s.l. were excluded to eliminate the potential 
influences of other disturbance agents, such as 
fungal diseases (Armillaria spp.). The selected 
study area of Tatra National Park was left in a 
non-intervention zone following a windstorm 
in November 2004. Forest stands consist of 
more than 50% Norway spruce (Picea abies L. 
Karst.). Dwarf mountain pine (Pinus mugo L.) 
stands are mainly present at higher elevations. 
Other coniferous trees are represented by Eu-
ropean larch (Larix decidua Mill., 5%), Scots 
pine (Pinus sylvestris Roth, 6%) and silver fir 
(Abies alba Mill., 0.5%). The share of decidu-
ous tree species is about 30%; the most abun-
dant species are silver birch (Betula pendula 
Roth.) and mountain ash (Sorbus aucuparia 
L.) (available at http://gis.nlcsk.org/lgis/). The 
studied forest stands were managed by stand-
ard forestry methods before the creation of the 
national park in 1949. Later, ‘close-to-nature’ 
forestry methods were applied. These forest 
stands could be characterised as being near-to-
natural sites. 
 Annual average precipitation of the study 
area is 1,600 mm, and the annual temperatures 
range from a mean minimum temperature of 
−4.9°C in January to a mean maximum tem-
perature of 8°C in July (Lapin et al. 2002). 
 The selected area was greatly affected by the 
windstorm in November 2004, after which a 

BBO began to develop (Nikolov et al. 2014). 
In 2005, the incipient epidemic phase started, 
followed by an epidemic phase in 2007. A post-
epidemic phase appeared after 2011. Because 
of the large-scale development of BBOs in the 
last few years, terrestrial methods of bark bee-
tle monitoring are not more appropriate.

Satellite data pre-processing 

For the purposes of this study, we used six 
mosaics of Landsat TM and ETM+ imagery 
(Table 1). Satellite scenes were downloaded 
from a USGS archive (http://glovis.usgs.
gov/): we used orthorectified-product L1T Ter-
rain Corrected images, in UTM map projec-
tion in the WGS 84 system. All scenes were 
transformed into an S-JTSK coordinate system 
(Krovak projection, Bessel ellipsoid 1841) us-
ing a transformation module in ArcGIS 10.2.1. 
The geometric root mean square (RMS) error 
at Landsat 5 TM and Landsat 7 ETM+ was 
around 4–5 m reported for the whole scene. 
Geometric precision correction is expected 
to be lower with RMSE, however: around 0.5 
pixel in the mountain region of the High Tatra 
Mountains. Landsat mosaics for single years 
were created from multiple images from June 
to September to ensure that there was no cloud 
cover or cloud shadows and, if possible, no 
strips in the Landsat 7 ETM images. Landsat 

Mosaics of Landsat images. The image from the date in bold was used as the master imageTable 1 
Landsat 
scene
(Path/Row)

Acquisition date (Landsat sensor)

188/26 19.VII.2006 (L5 TM) + 11.VII. 2006 (L7 ETM+)

187-188/26 22.VII.2007 (L5 TM) + 23.VIII.2007 (L5 TM) + 17. IX. 2007 (L5 TM)+ 31.VIII 2007 (L5 
TM) + 25.IX. 2007 (L7 ETM+)

187-188/26 2.IX.2008 (L7 ETM+) + 26.VIII.2008 + 13.X.2008 (L7 ETM+) + 29.V.2008 (L7 ETM+)

187-188/26 21.VIII.2009 (L5 TM) + 20.VIII.2009 L7 ETM+)
188/26 12.VI.2010 (L5 TM) + 23.VIII.2010 (L7 ETM+)

187-188/26 27.VIII.2011 (L5 TM) + 26.VIII. 2011 (L7 ETM+) + 3.IX.2011 (L5 TM) + 11.VIII.2011 
(L5 TM)
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images are composed of seven (L5 TM) and 
eight bands (L7 ETM+); in our study, we used 
only six bands in 30 × 30 m pixel size (bands 
1–5 and 7 without band 6 as thermal infrared) 
with digital numbers (DNs) ranging from 0–
255.  
 Before creating a mosaic, it was necessary 
to eliminate differences in spectral reflectance 
caused especially by different atmospheric 
conditions at the time of scanning and differ-
ent scanning geometry. We used radiometric 
normalisation using image regression. This 
method simply involves relating each pixel 
of the subject image with that in the reference 
image band by band to produce a linear equa-
tion through a least-squares regression (Jensen 
1986, Singh 1989). The regression technique 
accounts for the differences in the mean and 
variance between radiance values for differ-
ent dates. In our approach the method uses 
only forest pixels in the reference-subject im-
age pair. Olsson (1993) proved that regression 
functions computed only from forest pixels 
yielded higher coefficients of determination 
than functions computed from all image pix-
els, or from dark and bright areas only. The 

forest pixels could be considered to be pseu-
doinvariant features, i.e. objects with nearly 
invariant reflectivity from one image scene to 
another during the vegetation season (Xiaojun 
& Lo 2000). A mask of the forest was taken, as 
per the work of Bucha (1999). Simple thresh-
olds were used to eliminate new clear-cuts and 
calamitous areas from the mask.
 Previous works have shown that ratio-based 
indices and some linear combinations of Land-
sat bands are not affected by the topography of 
the terrain. Therefore it was not necessary to 
carry out topographic normalisation of images 
to eliminate varying shadowing. All Landsat 
images were cropped to the final study area. 
The scheme for processing Landsat images is 
shown in Figure 2. 

Vegetation indices 

Landsat DN data were used to calculate six 
types of VIs, which have been shown to be 
effective in detecting forest changes and in 
monitoring of forest mortality (Collins & 
Woodcock 1996, Vogelmann et al. 2009). VIs 
emphasise differences in the spectral response 

Schematic of the methodological approach. I. Calculation of Vegetation Indices (VI) for single 
years. II. Vegetation Index differencing resulting in the Changed Vegetation Index (ΔVI). III. 
Classification of ΔVI by a set of threshold values. IV. Comparison between the classified ΔVI and 
reference aerial photography, leading to the calculation of the kappa statistic and ROC curves

Figure 2 
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of different features, and reduce the impacts 
of topographic effects and illumination (Lu et 
al. 2004). The VIs used in this study can be 
first divided into two groups. The first group 
of indices belongs to the family of ratio-based 
vegetation indices, while the second group is 
derived using orthogonal transformation tech-
niques, such as Tasseled Cap transformation 
(Crist & Cicone 1984). Applying map algebra, 
we created four types of ratio-based VIs: the 
Moisture Stress Index (MSI) or Band5/Band4 
index, the Normalised Difference Moisture 
Index (NDMI), the Normalised Difference 
Vegetation Index (NDVI) and the Vegetation 
Condition Index (VCI) or Band7/Band4 index 
(Table 2). NDMI is comparable with the time 
Tasseled Cap wetness series in detecting for-
est disturbances (Jin & Sader 2005). Using a 
combination of derived components from the 
Tasseled Cap transformation (namely bright-
ness, greenness and wetness), we calculated 
the Disturbance Index (DI), which emphasises 
the contrast between the forest stand and bare 
soil (Healey et al. 2005, Masek 2005). The DI 
is based on the different spectral responses 
of stand-replacing disturbances, which have 
a higher reflectance of brightness and lower 
reflectance of greenness and wetness than do 
mature forests (Healey et al. 2006); Knorn 
et al. (2012) used this method succesfully in 
forest disturbance detection in the Carpathian 
Mountains. Because of the different behaviour 
of the greenness in our study, which was due to 

specific vegetation dynamics, we equally uti-
lised the Modified DI (DI´) equation proposed 
by Hais et al. (2009). 

Normalisation

All of the aforementioned indices calculated 
for the six examined years (2005–2009 and 
2010–2011) were normalised on the area that 
was visually identified via aerial photography 
as being living forest in 2011 (the last year in 
the database). We have utilised the formula 
proposed by Healey et al. (2005):
                                           
                 (1)

where Ir is an index value, Iµ is the mean for-
est index of the undisturbed forest stand and Iσ 
is the SD of the forest index in the undisturbed 
area in the given year. The mean forest values 
and SDs were used only from stands that were 
unaffected by disturbances (such as harvesting 
or bark beetle outbreaks) over the entire pe-
riod of the assessment. This type of rescaling 
helped to remove most of the influence of phe-
nology or differences in sun-surface sensor ge-
ometries, and was related to a standard spruce 
stand in the same area in every year (Hais et al. 
2009). A low-pass mean filter (3 × 3 pixel win-
dow) was applied to the VI images to minimise 
the influence of any pixel misregistration.

I I
Ir I

µ

σ




Landsat-derived spectral indices considered in the classification; bands (B) refer to the ETM band 
order

Table 2 

Index Formula Notes Reference
MSI B5/B4 Sensitive to conifer tree health Vogelmann (1990)
NDMI (B4–B5)/(B4+B5) Sensitive to green (healthy) vegetation Jin & Sader (2005)
NDVI (B4–B3)/(B4+B3) Sensitive to biomass Rouse et al. (1973)
VCI B7/B4 Sensitive to green (healthy) vegetation Jakubauskas & Price (1997)

DI DI = brightness 
–(greenness + wetness)

Emphasises the contrast between the 
forest stand and bare soil Healey et al. (2005)

DI´ DI´ = wetness 
– brightness

Modified DI, because of a different 
behaviour of the greenness Hais et al. (2009)



301

Havašová et al.                                                                                       Applicability of a vegetation indices-based method ...

Vegetation index differencing

Detecting changes is one of the most common 
types of multi-temporal analysis; it involves 
the direct comparison of two images to iden-
tify how areas change over time. In this study, 
we used the approach of vegetation index (VI) 
differencing, following the procedures recom-
mended by Singh (1989), to reveal changes 
in the forested area. VIs were calculated for 
every year. The resulting image of change is 
produced by subtracting the VI of the second 
year (after disturbance, time 2) from the first 
year (before disturbance, time 1) (Lu et al. 
2004). Hereafter, for images resulting from VI 
differencing, the term Changed VI (ΔVI) is ap-
plied. The last one was calculated at a 30 × 30 
m pixel resolution: 

ΔVI = VI (time1) - VI (time2)               (2)

Classification of changed vegetation index

Changed VIs (ΔVIs) were calculated for five 
two-year periods (2005–2006, 2006–2007, 
2007–2008, 2008–2009 and 2010–2011). VI 
differencing equally reveals positive and nega-
tive changes in forest stands. Pixels revealing 
positive and negative changes are localised on 
different extremities of the ΔVI density plot 
(Figure 3). Because we focussed on forest 
stand degradation in this study, we neglected 
the potential changes caused by improved 
forest conditions. Hence, we considered only 
one extremity of the density plot as being 
‘changed’. For ΔVI: VCI, MSI and DI, the 
negative change is located on the left side of 
the density plot. For ΔVI: NDMI, NDVI and 
DI´, the negative changes are located on the 
right side (Figure 3). The extremities of the 
density plot were determined visually.
 The identification of the correct threshold 
value for reclassifying the entire area into a 
truly changed or unchanged location is the 
crucial factor in the detection of changes in a 
forest. The threshold (x) is defined as the mul-

tiplication of the standard deviation (SD) by 
the mean value: 

mean ± x . standard deviation                      (3)

Thereafter, the mean and SD were extracted 
for every ΔVI. The possible threshold values 
varied from a mean of -3 . SD to a mean of +3 
.  SD. Accordingly, we used sequence values 
from -3 to +3, with 0.1 step sizes. In this way, 
60 values were applied to the ΔVI as thresh-
olds separating real change from unchanged 
pixels. 

Reference data 

The Research Station at Tatra National Park 
provided visual interpretations of bark beetle 
patches and spreading, as assessed by aerial 
photography from 2006 to 2009 and in 2011. 
Aerial photography from 2010 was not avail-
able and thus has not been evaluated. Polygons 
of BBOs were rasterised into 30 × 30 m resolu-
tions and snapped to the Landsat mosaic from 
2011. Forested areas in the evaluated years 
were not included in the aerial surveys of 
BBOs. As a result, the area of forest cover used 
as a reference dataset was created by a combi-
nation of a forest inventory dataset from 2006 
(which characterised the abundance of Norway 
spruce in different forest compartments) and 
by the visual interpretation of aerial photogra-
phy. Forest compartments with Norway spruce 
abundances >50% were adjusted visually for 
every year; thus, areas of possible clear-cuts 
were eliminated. The final reference image for 
a single year is composed of rasterised areas 
of a BBO and of rasterised actual forest cover. 
The majority filter of 3 × 3 pixels was applied 
to remove isolated pixels and to eliminate the 
‘salt-and-pepper’ appearance that is common 
for pixel-based digital classification results 
(Coppin & Bauer 1994). 
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Analysis of bark beetle infestation from 
aerial photography

Areas of BBOs from aerial surveying were 
clumped into separate patches by Queen’s 
case; thus, pixels connected by a pixel’s angle 
were considered as one patch. The quantity and 
range of bark beetle patches was classed sepa-
rately for every year. The severity of BBOs 
was characterised by the frequency of spots in 
five classes, depending on patch size: the first 
class was created by a bark beetle spot with an 
area of 1 pixel; the second class, up to 9 pixels, 
the third class was determined by an area up to 
25 pixels, the fourth class, up to 49 pixels and 
the fifth class was formed by a spot’s area over 
49 connected pixels.

Evaluation of classification 

Classified ΔVI was compared against rasterised 
reference dataset and cross-tabulated, produc-
ing a two-by-two confusion matrix (also called 
a ‘contingency table’, Table 3). The confu-
sion matrix displays correctly classified pixels 
against incorrectly classified pixels where the 

classes are confusing. Two main metrics could 
be calculated: kappa statistics, as kappa index 
of agreement (Cohen 1960), and the metrics 
of receiver operating characteristics (ROCs) 
(Homayouni & Roux 2004, Fawcett 2006). 
 Cohen’s kappa coefficient is a statistical 
measure of inter-rater agreement for categori-
cal items. The kappa reflects the difference be-
tween the actual agreement and the agreement 
expected by chance. The highest kappa index 
of agreement can identify the optimal thresh-
old value to separate changed from unchanged 
pixels. The highest obtained kappa index val-
ues can provide the sensitivity of the index to 
detect BBOs. 
 ROCs can be used to visualise classifier per-
formance in an ROC graph to select the proper 
threshold value: ROC curves compare the 
measures of pixels that are correctly and incor-
rectly classified as being BBOs. The probabil-
ity of false positives (P[Fp]) operates with pix-
els classified as BBO. In the reference dataset, 
however, the same pixels are marked as forest; 
thus, they are false positives. The probability 
of true positives (P[Tp]) operates with pixels 
marked as BBO in both the ΔVI and the refer-

Density plot for Changed Vegetation Index (ΔVI) for selected Vegetation Indices (VIs: NDVI, 
NDMI, VCI, MSI, DI, DI´). Threshold value separating ‘changed pixels’ considered as BBOs 
(red) from ‘unchanged pixels’ (white) can be different for every VI. The decreasing vegetation 
quality because of BBOs is located on a different extremity of the ΔVI density plot

Figure 3 
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ence dataset. In 2-dimensional ROC space, the 
P(Tp) (y axis) is displayed against the P(Fp)  
(x axis), thereby creating the ROC space.
 Discrete classification produces only one 
point in an ROC space. As the best suitable 
threshold value, we considered that the point 
in ROC space with the minimal Euclidean dis-
tance from the optimal threshold point, where 
P(Fp) = 0, P(Tp) = 1, to represent the perfect 
classification. The ROC plot was displayed 
and the Euclidean distance was calculated for 
every contingency table. The shortest Euclide-
an distance represents the best suitable thresh-
old value (Bucha & Stibig 2008).
 All visualisations were done using ArcGIS 
10.2.1 and Erdas Imagine 2013. All calcula-
tions were performed using the raster (Hij-
mans 2014) and asbio (Aho 2014) packages in 
R statistical software (R Core Team 2014). 

Results

Kappa index of agreement

The threshold values identified by the kappa 
statistics seemed to be more rigorous in detect-
ing BBOs because fewer numbers of pixels 
were classified as BBOs (for example, thresh-
old mean -0.6 . SD and mean -0.2 . SD for MSI 
in 2007, as determined by kappa statistics and 
ROC, respectively). Following the kappa in-
dex values (Figure 4), the results were separat-
ed into two groups: years with high accuracy 
measures (2007 and 2011, kappa index >70% 
and >40%, respectively) and a group of years 
with low accuracy measures (2006, 2008 and 

2009, kappa index ≈10%). In 2007 and 2011, 
VI differencing of MSI, VCI, NDMI, DI and 
DI´ reached comparable kappa index values. 
Accordingly, we considered them to be the 
most appropriate to detect BBOs. The kappa 
index of NDVI, however, reached 35% and 
36% in this time period. In hardly detectable 
years (2006, 2008 and 2009), NDVI reached 
the lowest value (≈0%). For this reason, we 
do not recommend VI differencing of NDVI 
in further studies that identify BBOs as a veg-
etation change from one year to another. We 
applied a set of threshold values using the VI 
differencing method to separate changed from 
unchanged pixels. For visualisation, we select-
ed threshold values and their adequate kappa 
indices for MSI (Figure 4) for the examined 
years, and the direct comparison of bark bee-
tle patches identified by visual interpretation 
of infrared aerial photography (Figure 5a) and 
bark beetle outbreak by vegetation index dif-
ferencing derived from Landsat imagery (Fig-
ure 5b). The best-suited threshold value was 
different from one year to another (Table 4). 
From the kappa statistics, the stable threshold 
value thus is not widely applicable to the de-
tection of changes caused by BBOs.

ROC curves

In the graph of ROC space (i.e. for ΔMSI in 
Figure 6a), the dependence between the pro-
portion of pixels classified as true positives 
(Tp) and false positives (Fp) was evident. A 
combination of i) the highest probability of 
true positives P(Tp) and ii) the lowest prob-
ability of false negatives P(Fn) that yielded 

Confusion matrix using ROC curves terminology. The probability of “true” or “false” bark beetle 
outbreak detections are calculated as: the probability of true positives, P(Tp) = Tp/(Fn + Tp), and 
the probability of false positives, P(Fp) = Fp/(Tn + Fp)

Table 3 

ΔVI Classification
Forest BBO

Reference
Forest True negative (Tn) False positive (Fp)

BBO False negative (Fn) True positive (Tp)
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the lowest Euclidean distance from the P(Fp) = 
0, P(Tp) = 1 point indicating the best threshold 
value  - and, equally, the most sensitive VI (Fig-
ure 6b) - was used to visualise the threshold val-
ues and associated Euclidean distance for ΔMSI. 
The lowest Euclidean distances for all years and 
VIs are shown in Table 4. In 2007, distances var-
ied by ≈0.15 for all VIs, except for the NDVI 
(Euclidean distance 0.49). Equally, in 2008, the 
NDVI was not appropriate to monitor changes 
caused by BBOs (Euclidean distance ≈1). The 
lowest distances were in 2006, 2007 and 2011, 

which correspond to the results of the kappa sta-
tistics with the highest potential BBO detectabil-
ity in 2007 and 2011. The most suitable indices 
from the ROC curves should be DI´, MSI and 
VCI, with thresholds ranging from -0.4 to -0.2 
for MSI and VCI and from 0.2–0.7 for DI´(Table 
4).

Analysis of bark beetle infestations from 
aerial photography

The excellent results for the VI change detec-

Comparison between bark beetle patches that originated in 2011 by visual interpretation of aerial 
photography (a) and by Vegetation Index differencing of Landsat imagery (b).

Figure 5 

Kappa index of agreement with corresponding threshold values for ΔMSI for change identification 
for 2006–2009 and 2011. The highest kappa value identifies the best threshold value

Figure 4 
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tion of the BBOs in 2007 and in 2011 may be 
due to the epidemic phase, which is character-
ised by large-sized patches of bark beetle spots 
(Figure 7). In 2007 and 2011, the recorded 
BBO was about 40 ha, compared with 4 ha, 
18 ha and 15 ha in 2006, 2008 and 2009, re-
spectively. Additionally, the proportion of 
pixels from small patches changed from one 
year to another. In the years before 2006 and 
during the epidemic phase (2008 and 2009) of 
BBOs, the spots of bark beetle infestation were 
smaller and more dispersed in forested areas. 
The strips in the Landsat ETM in 2008 limit 
the possibility of detecting newly created bark 
beetle patches. Applying image differencing, 
both the 2007–2008 and 2008–2009 periods 
were affected by this missing pixel data. 

Discussion

Vegetation indices

All utilised VIs were previously marked as 
useful in monitoring declines in conifer for-
ests (Vogelmann 1990; Ardö 1998; Meigs et 
al. 2011) because they capture subtle spectral 
changes of chlorophyl and carotenoid concen-
tration of vegetation in decline in comparison 

to healthly leaf tissue (Rock et al. 1986). The 
NDVI seemed to be the most suitable index for 
monitoring forest biomass content (Myneni et 
al. 1995) and forest recovery (Mancino et al. 
2013), but it should not be considered as an 
inverted value of forest decline. The method 
of VI differencing did not show good accuracy 
values when detecting forest changes caused 
by BBOs using NDVI (kappa values ranged 
from −0.2 to 36.4% , Table 4). The most sen-
sitive indices were the MSI, VCI and NDMI. 
VIs derived from Tasseled Cap transforma-
tions yielded equally high kappa values, and 
the DI´ (Hais et al. 2009) is more appropriate 
for monitoring forest declines in the High Tatra 
Mountains than the DI (Healey et al. 2005). 
 Differences in the MSI, VCI, NDMI, DI and 
DI´ are the most appropriate for monitoring 
BBOs, as they achieved good accuracy meas-
ures, mostly in the epidemic phases in 2007 
and 2011. Low accuracy values were found in 
the incipient epidemic phase: all VIs had ka-
ppa values of ≈10% . We do not recommend 
the the use of VI differencing of NDVI in the 
epidemic phase because of its poor classifica-
tion accuracies.
 

ROC curves and Euclidean distances obtained from different thresholds for ΔMSI for the exam-
ined years. (a) Probability of false positive (P[Fp]) versus true positive (P[Tp]) detection (ROC 
curves); (b) Euclidean distance from the point of the optimal solution (P[Fp]=0, P[Tp]=1). Thresh-
old units: levels of standard deviation from the mean in ΔMSI

Figure 6 

(a) (b)

2007
2006
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Applicability of stable thresholds

The hypothesis that stable threshold values 
could be used to identify changes resulting 
from historical BBO mapping was not con-
firmed. The method of VI differencing and 
change identification by stable threshold val-
ues is not broadly applicable to identify forest 
changes because the threshold values in our 
study differed from one year to another. There-
fore, it is impossible to apply the threshold on 

the fixed level mean ± x . standard deviation 
using VI differencing without cross-tabulation 
to a reference dataset.

Vegetation index differencing

From the results, we can conclude that VI dif-
ferencing is a very straightforward method to 
identify BBOs. This approach has two main 
disadvantages, however. The first is the neces-
sity to determine the actual forest cover and to 

The threshold values corresponding to the highest kappa values and to the lowest Euclidean dis-
tance value for the ROC curves for ΔVI for the examined years and vegetation indices

Table 4 

Year ΔVI
Kappa ROC curves
Threshold Kappa Threshold Distance

20
06

MSI -0.8   7.4 -0.4 0.18
VCI -0.7   8.6 -0.4 0.19
NDMI  1.1   6.3  0.6 0.19
NDVI  1.7   6.5  0.3 0.43
DI -1.3   8.5 -0.4 0.21
DI´  1.6   9.4  0.7 0.16

20
07

MSI -0.6 70.9 -0.2 0.17
VCI -0.5 71.8 -0.2 0.16
NDMI  0.8 70.9  0.3 0.18
NDVI  0.8 35.2  0.2 0.49
DI -0.6 72.7 -0.3 0.15
DI´  0.5 74.5  0.2 0.13

20
08

MSI -1.6 11.8 -0.2 0.54
VCI -1.6   9.7 -0.4 0.62
NDMI  1.5 10.9  0.2 0.52
NDVI  3.0 -0.2  3.0 1.00
DI -1.7 14.9 -0.4 0.62
DI´  1.9 17.3  0.2 0.53

20
09

MSI -0.9 14.0 -0.6 0.26
VCI -0.7 12.1 -0.6 0.27
NDMI  1.9 14.9  0.6 0.26
NDVI  0.9   8.0 NA NA
DI -1.1 12.7 -0.5 0.27
DI´  1.1 11.9  0.5 0.31

20
11

MSI -1.7 49.4 -0.5 0.21
VCI -1.5 46.3 -0.6 0.22
NDMI  1.7 49.3  0.5 0.23
NDVI  1.5 36.4  0.6 0.37
DI -1.8 43.9 -0.7 0.21
DI´  1.6 40.9  0.5 0.22
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constrict further analysis of vegetation change 
detection in the area. During the study, we tried 
to automatically identify forest cover by ap-
plying threshold values via visual inspection, 
using one of the Tasseled Cap components to 
describe surface brightness. This approach is 
useful for eliminating the darkest (lakes, steep 
slopes) and the brightest (rocks, buildings) ob-
jects in Landsat images (Meddens et al. 2013). 
Using normalisation based on unchanged for-
est for several years, however, as proposed 
by Healey (2005), it was impossible to deter-
mine the threshold values characterising the 
brightest objects and the darkest objects over 
the entire stack of Landsat images. Likewise, 
forest identification assumes the existence of 
a ‘forest peak’ or mode of the distribution if 
sufficient forest is present (Huang et al. 2008). 
This approach was not shown to be success-
ful in simple forest identification. Forest peaks 
were mostly noticeable in Landsat bands 2, 3 
and 5. After visual inspection, we found that 
the green band (B2) best separated forested 
and non-forested areas. The threshold position 
determined by the simple modal value masked 
areas of vegetation damage during BBOs, 

however. As a result, it was impossible to iden-
tify these areas using VI differencing. Forested 
areas were mapped for the second year of the 
change (time 2) in an attempt to eliminate the 
possibility of newly created clear-cuts. 
 The second problem is using ΔVI to iden-
tify the cause of the change. Although the 
utilisation of a set of thresholds can be easily 
applicable, the need for a reference dataset re-
mains. Equally, the preliminary knowledge of 
the actual phase of BBOs is required because, 
according to our results, VI differencing using 
selected vegetation indices is mostly appropri-
ate during the epidemic phase of BBOs, which 
are characterised by a high expansion of spots 
and by a high proportion of continuous areas 
of damaged vegetation (Latifi et al. 2013). 
 If the BBO was in the incipient epidemic 
phase or post-epidemic phase, the spots were 
more dispersed and comprised small areas. It 
is more difficult to identify isolated patches of 
BBO. In small patches, the size of the infested 
patches is the decisive factor; thus, remotely 
sensed data that is of high to moderate spatial 
resolution is best-suited for detection (Wulder 
et al. 2006). The present study demonstrated 

Bark beetle outbreak (BBO) patch sizes from a rasterised BBO survey derived from aerial photog-
raphy for the examined years. Patches are classified into five classes depending on the number of 
pixels forming spots. (a) Quantity of patch sizes in different categories in the examined years; (b) 
total damaged area by BBO patches, classified into five classes depending on pixel size
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the ability to detect and monitor BBOs using 
satellite imagery.
 VI differencing is not widely applicable to 
monitoring annual BBOs without a reference 
dataset using a stable threshold value. In fu-
ture studies, we recommend the utilisation of 
VIs derived from Landsat imagery simply by 
the application of map algebra (MSI, VCI and 
NDMI) to keep this approach more straightfor-
ward and easily interpretable. The determina-
tion of the forested area, however, remains the 
key factor in the identification of BBOs. 

Management implications

Our study confirms the importance of aerial 
photography for the identification of trees at-
tacked by bark beetles as part of forest man-
agement. Affordable Landsat imagery could 
possibly be used in the epidemic phase of ex-
tensive bark beetle outbreaks. Several suitable 
vegetation indices could be used (MSI, VCI 
and NDMI). It is possible that another type of 
satellite data with higher resolution could be 
used, as well, although price and availability 
could be limiting factors. Aerial photography 
remains the best available tool. The situation 
could be significantly changed after the launch 
of the new ESA satellite Sentinel-2 in 2015 
(Drusch et al. 2012). The new satellite should 
carry sensors with sensors with significantly 
better spatial and spectral resolution than 
Landsat. Acquired data should be available in 
a similar way as the Landsat data. 

Conclusions

VI differencing is mostly applicable during 
the epidemic phase of BBO, which is char-
acterised by groups of bark beetle–attacked 
trees over large areas. In the epidemic phase, 
we achieved good results (kappa 70%, overall 
accuracy 94%) regarding BBO identification 
from Landsat imagery converted to VIs. The 
best-identified years were the change between 

2006 and 2007 and from 2010 to 2011. Both of 
these periods were characterised by large-scale 
epidemic phases of BBOs. The most suitable 
VIs were MSI, VCI and NDMI derived from 
Tasseled Cap transformations. VI differencing 
is not widely applicable to monitoring annual, 
historical BBOs without a reference dataset 
using a stable threshold value.
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