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Abstract. The aim of the present study is to evaluate the potential of C-band SAR 
data from the Sentinel-1/2 instruments and machine learning algorithms for the 
estimation of forest above ground forest biomass (AGB) in a high-biomass trop-
ical ecosystem. This study was carried out in Jamari National Forest, located in 
the Brazilian Amazon. The response variable was AGB (Mg/ha) estimated from 
airborne laser surveys. The following treatments were considered as model pre-
dictors: 1) Sentinel-1 Sigma 0 at VV and VH polarizations; 2) (1) plus Sentinel-1 
textural metrics; 3) (2) plus Sentinel-2 bands and derived vegetation indices (LAI, 
RVI, SAVI, NDVI).Our modeling design estimated the relative importance of SAR 
vs. optical variables in explaining AGB. The modeling was performed with twelve 
machine-learning algorithms including, neural network and regression tree. The 
addition of texture and optical data provided a noticeable improvement (3%) over 
models with SAR backscatter only. The best model performance was achieved with 
the Random Tree algorithm. Our results demonstrate the potential of freely-avail-
able SAR data and machine learning for mapping AGB in tropical ecosystems.
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Introduction

Forests are widely distributed vegetation eco-
systems on the planet, covering approximately 
4000 million hectares (FAO 2015). Informa-
tion on the status and monitoring of forests is 

highly relevant to map ecosystem environmen-
tal services, and to quantify their role as terres-
trial carbon sinks (Waring & Running 2007). 
However, forests’ role in the global carbon 
budget remains poorly characterized owing to 
practical difficulties of measuring the stocks 
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of forest biomass on a large scale (Minh et al. 
2016), especially when dealing with tropical 
forests located in complex environments.
 Commonly, forest above-ground biomass 
(AGB) can be estimated through three meth-
ods: (i) inventory measurements: involve de-
structive measurements of sample plots which 
produce reliable information about the AGB at 
local or regional scales (Chave et al. 2004), (ii) 
model-based simulations: they usually provide 
estimates on a local to global scale, based on 
pre-adjusted allometric models with invento-
ry data (Lu 2006), (iii) estimation from data 
from satellites: these are usually combinations 
of remote measurements and based on the 
measurements obtained by the field inventory 
(Stickler et al. 2009). Compared to the for-
est inventory model and approaches, remote 
sensing techniques significantly improve the 
efficiency of forest AGB mapping in areas of 
difficult access (Lu 2006), with better spatial 
and temporal coverage.
 Field measurements are essential for the ver-
ification of the indicators obtained by remote 
sensing; however, there are several potential 
sources of inventory error, such as variation 
in plot size and the allometric equations used 
(Chave et al. 2004). In addition, according 
to Houghton et al. (2009), current estimates 
of AGB and carbon stock in tropical forests 
come from extrapolations from a limited num-
ber of field sites, leaving many regions and 
forest types underrepresented. As with field 
measurements, some technologies, such as 
LiDAR, are promising and capable of estimat-
ing forest variables for a large scale and with 
high accuracy (Andersen et al. 2013, Ruiz et 
al. 2014, Deo et al. 2016, Silva et al. 2017). 
However, LiDAR technology has the limita-
tion of having a high cost, making it impossi-
ble to acquire systematic data for monitoring, 
thus creating the need for another technology 
that can produce wall-to-wall maps for large-
scale monitoring efforts. Thus, the alterna-
tive of Synthetic Aperture Radar (SAR) data 
emerges for forest investigations and is more 

evident after the launch of new satellites that 
have SAR sensors on board (for example Ter-
raSAR-X, ALOS-2 and Sentinel-1), offering 
cloud-free images with fine resolution (< 20m) 
and frequent revisits (Santini et al. 2017). 
 SARs are active microwave sensors that 
can operate at any time of day and penetrate 
clouds, offering significant advantages for 
monitoring sites with dense cloud cover such 
as the Amazon. Furthermore, dual - or quad-
pol SAR products allow researchers to map 
vegetation structure by estimating the relative 
contribution of ground, canopy, and trunks to 
the received signal (Ningthoujam et al. 2018).
The backscatter approach based on SAR data 
is widely known for the mapping of AGB 
(Berninger et al. 2018). It consists of the meas-
urement of the energy received by the sensor 
after the transmission, known as backscatter, 
in which this measurement is subsequently re-
lated to AGB measurements in the field. The 
backscatter values are sensitive to the amount 
of biomass at a given location, it means that 
at a certain point the saturation will occur, 
in which the sensitivity of the backscatter to 
AGB is stagnated. This point is related to the 
wavelength of the sensor (Joshi et al. 2007), 
the C-band has a wavelength capable of pen-
etrating through the leaves, but scattered with 
the existence of small branches, the L-band, 
has a longer wavelength and is spread by 
trunks and branches thick. The P-band is the 
most suitable for AGB quantification, because 
at this wavelength the sensor energy is able to 
penetrate the forest canopy, but P-band data is 
not yet available for free (Ghasemi et al. 2011).
L-band sensors have been widely employed 
to estimate forest AGB (Carreiras et al. 2013, 
Cartus et al. 2012, Saatchi et al. 2011a, San-
tos et al. 2002). Originating mainly from the 
satellite ALOS PALSAR satellite that was in 
operation from 2006 to 2011, leaving a free 
monitoring and availability gap ever since. 
Considering the reduction of the series of free 
data for this range and the indicated limitation 
for the high AGB forest, characteristic of the 
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Amazon Forest, there is a need to explore the 
combination of other freely available data to 
ensure the continuity of forest cover estimates, 
such as the case of the C-band SAR data ob-
tained by the Sentinel 1 satellite, texture 
measurements and optical data, together with 
texture information as well as optical images.
The texture of SAR images can provide infor-
mation related to the structural and geometric 
properties of forest canopies (DeGrandi et al. 
2009), which may correlate with AGB and be 
especially useful in discriminating between 
forest types (Podest & Saatchi 2002).
 In this context, the objective of the pres-
ent study is to evaluate the potential for esti-
mating forest AGB with the combination of 
SAR, information of texture and optical data 
and employing machine learning algorithms. 
A secondary objective is to compare model 
accuracy across different machine learning 
approaches and quantifying the relative impor-
tance of radar and optical observations as AGB 
predictors.

Materials and methods

Study area

The study area is located in the Jamari Na-
tional Forest (Flona) (Figure 1), State of Ron-
dônia, in the north region of Brazil (9º 9’ S and 
62º 58’ W). Jamari Flona has an area of about 
220.000 hectares of Dense Rain Forest, desig-
nated as a Sustainable Use Conservation Unit 
of the Amazon Forest.
The flora at our study site is representative of 
the southwestern Amazon, a region subject 
to high rates of deforestation. According to 
the Technical Manual of Brazilian Vegetation 
(IBGE 2012), the physiognomic-ecological 
classification is predominantly of Dense Rain 
Forest, with some portions of Open Ombro-
phylous Forest, predominantly of palm trees 
or liana.

Sentinel data acquisition and processing

Synthetic Ap-
erture Radar 
images from 
the Sentinel 1 
satellite and 
multispectral 
Sentinel 2 im-
ages of the Eu-
ropean Space 
Agency were 
d o w n l o a d e d 
from the Co-
pernicus Senti-
nels Agency’s 
Scientific Data 
Center (ESA 
2016) and used 
for this study. 
A summary of 
the specifica-
tions can be 
seen in Table 1. AGB (Mg.ha-1) obtained by means of LiDAR airborne data and location of 

the study area on Brazil
Figure 1
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For the images of the Sentinel 1A satellite, we 
employed SNAP 5.0 software (Sentinel’s Ap-
plication Platform) (SNAP 2018) to generate 
Analyses Ready Datasets. The steps include 
(1) the radiometric calibration for the conver-
sion of the pixel value in backscatter (Sigma 
0), (2) apply a Redefined Lee filter for Speckle 
reduction, and (3) apply the Range-Doppler 
Terrain correction to geocode the SAR image 
to UTM WGS84 coordinate system.
 SNAP software was also used to derive 
several texture metrics from the geocoded 
backscatter. Specifically, we employed a 5 
x 5 window (Mahdianpari & Motagh 2017, 
Oon & Azhar 2019), to generate a Gray Lev-
el Co-Occurrence Matrix (GLCM) for the VH 
and VV bands with the following calculations: 
contrast, dissimilarity, homogeneity, second 
angular momentum (ASM), energy, maximum 
likelihood (MAX), entropy, mean, variance 
and correlation. The Principal Components 
(PCA) images were also generated. Detailed 
descriptions of each texture measure can be 
obtained in Haralick (1979).
We searched for local precipitation data near 
our study site, given that humidity has an in-
fluence on backscatter values (Kirimi et al. 
2016). The meteorological stations closest to 
our study site were Porto Velho (code A925 
113 Kilometers away) and Ariquemes (code 
A940, 80 km away). Porto Velho station re-
corded 4 mm precipitation on the day before 
the Sentinel 1 acquisition and no accumulated 

volume in the last 5 days, whereas Ariquemes 
station (code A940) did not register precipita-
tion in the 10 days prior to imaging. The Sen-
tinel 2A satellite images used here had Level 
1C processing applied to them, which includes 
they have been processed for radiometric 
and geometric corrections (Sentinel-2_Team 
2015). Each granule contained 13 bands with 
resolution varying between 10-60 m. Atmos-
pheric correction was performed in semi-au-
tomatic classification plugin inQgis software 
(version 2.18.16).
 Vegetation indices were generated from the 
multispectral image to serve as complemen-
tary information for the modeling. They in-
cluded Soil Adjusted Vegetation Index (SAVI) 
taking 0.25 for the soil adjustment variable 
(Huete 1988), Ratio Vegetation Index (RVI), 
Leaf area index (LAI) and Normalized Differ-
ence Vegetation Index (Allen et al. 2002).
We chose to perform our analyses at 100 m 
scale based on previous studies of LiDAR 
metrics as a function of spatial resolution. To 
achieve this, some statistics (minimum, maxi-
mum, mean, standard deviation and variance) 
were calculated, covering the sets allowed pix-
els within each grid.
 Proving with this grid-size decision, Morel 
et al. (2011) resampling the images to the res-
olution of 100 m and Urbazaev et al. (2018) 
used the resampling of the nearest neighbors 
and the average of blocks to aggregate the pix-
els in a spatial resolution of 100 m. Morel et 

Sentinel 1 Sentinel 2
Acquisition date 2016-02-15 Ingestion Date 2015-08-25
Product type GRD Satellite number A
Instrument mode IW Instrument MSI
Orbit number 9955 Orbit number 908
Relative orbit 83 Relative orbit 53
Polarisation VV, VH NSSDC identifier 2015-000A
Pass direction Descending Pass direction Descending
Product Level L1 Product Level 1C

Summary of the Sentinel 1 and 2 satellites specificationsTable 1



113

Debastiani et al.                                                                                                             Evaluating SAR-optical sensor fusion ...

al. (2011) emphasize that grid size is an impor-
tant factor for correlating field data with SAR 
backscattering and that a 100 m grid is a reli-
able size, being less prone to errors related to 
the expansion of variables measured in small-
er areas and the impact of geolocation errors. 
Garcia et al. (2018) emphasizes that pixel size 
also influences model accuracy, for estimating 
forest canopy height with 100 m spatial reso-
lution.

LiDAR data and processing

The data used in this study were acquired from 
the Brazilian Sustainable Landscapes Project, 
supported by the Brazilian Agricultural Re-
search Corporation (EMBRAPA), the Unit-
ed States Forest Service (USFS), the United 
States Agency for International Development 
(USAID) US Department of State. The LiDAR 
data used in this work refer to a flight with an 
instrument de named Optech Orion, conducted 
on September 21, 2015. Table 2 presents the 
survey parameters.
 The LiDAR data were processed using FU-
SION software version 3.60 (McGaughey 
2016), which was developed by the US For-
est Service. We fol-
lowed standard pro-
tocols for processing 
cloud LiDAR data, 
shown on Figure 2. 
First, the point cloud 
was cropped to the 
area of interest and 
points belonging to 
ground returns were 
identified in order to 
generate a digital ter-
rain model (DTM).
 Next, the LiDAR 
points clouds were 
subject to a normal-
ization of values, 
in this step, the real 
height of each object 

were obtained, such as the height of the trees, 
generating of digital surface model (DSM). 
Subsequently, several statistics were extracted 
at 100 m resolution from the LiDAR points 
clouds, totaling 286 squares (Figure 1). Final-
ly, with the extraction of the statistics the val-
ues of AGB were obtained by means of Equa-
tion 1 (D’Oliveira et al. 2012):

AGB = (3.119 + 0.564 ‧ P25 + 0.062 ‧ Var)2 + 
1.74                                                            

Specifications 2011
Date of acquisition 2011/11/17
Datum Sirgas 2000
UTM coordinate system 20S
Total area 500ha
Average pulse density/m² 15.43 ppm²
Average Flight Altitude 850 m
Field of vision 11.1 °
Scanning frequency 59.8 Hz
Overlay Percentage 65%

Airborne Specifications with LiDARTable 2

Workflow performed in this studyFigure 2
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where: AGB - represents the dry biomass 
above the soil (Mg‧ha-1, diameter at breast 
height trees ≥10 cm), P25 - equals the returns 
of the first quartile or 25% percentile, Var - el-
evation variation.
 It was decided to use as a dependent varia-
ble the AGB estimation obtained from a sur-
vey with LiDAR technology mainly due to the 
unavailability of field data for the year of in-
terest. The use of biomass data obtained from 
LiDAR measurements as the dependent varia-
ble has previously been used by Englhart et al. 
(2011) with satisfactory results.

Biomass modeling from Sentinel images

We compared three treatments that aimed at 
predicting AGB from different combinations 
of SAR and optical observations: (1) Sen-
tinel-1 Sigma 0 at VV and VH polarizations 
(2) (1) plus Sentinel-1 textural metrics, (3) (2) 
plus Sentinel-2 bands (B02, B03, B04, B05, 
B06, B07, B08, B8a) and derived vegetation 
indices (LAI, RVI, SAVI, NDVI).
 In order to build a parsimonious model, the 
CFS algorithm (CfsSubsetEval) implemented 

in WEKA software (Waikato Environment 
for Knowledge Analysis) was used to find the 
best pairs of variables as well as their mini-
mum, maximum, mean, standard deviation, 
and variance for the three treatments. CFS is 
a well-known data mining approaches that 
evaluates the value of a subset of attributes by 
considering the individual predictive capacity 
of each characteristic along with the degree of 
redundancy between them. The main idea of 
the CFS is that good variables include values 
highly correlated with the class, but not with 
each other. Thus, the data subsets are first se-
lected using a heuristic search algorithm cou-
pled with a Pearson correlation function (Hall 
1999).
 Having the input variables selected, we em-
ployed Huber’s Robust Regression (Li 1985), 
using R software and the MASS package (R 
CORE TEAM 2017). All other modeling was 
performed in WEKA software version 3.8.2. 
The trainings / tests with the machine learn-
ing models used (Table 3), were constructed 
with 10 part (k) cross validation. In the cross 
validation of the WEKA software, the original 
sample is randomly divided into k subsamples. 

Algorithm Classifier type Key description
Multilayer Perceptron Functions Backpropagation to classify instances
SMOreg Functions Support vector machine for regression

Robust Regression Functions
Weigh the observations differently based on how well behaved 
these observations are

Decision Stump Trees Building and using a decision stump
Random Forest Trees Construction a forest of random trees
Random Tree Trees Tree construction based on K-randomly chosen attributes
REP Tree Trees Fast decision tree learner
M5P Trees Implements the M5’ model tree algorithm
IBk Lazy K-nearest neighbors classifier
Kstar Lazy Instance-based classifier
LWL Lazy Locally weighted learning

Machine learning algorithms used for this study available in WEKA software (Adapted from Castillo 
et al. 2017)

Table 3
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A single subsample k was maintained to vali-
date the model and the remaining k-1 was use 
for model training. Then, this process were re-
peated k times, with each of the subsamples for 
validation.The evaluation of the performance 
of the algorithms was through the root mean 
square error (RMSE) in absolute and relative 
form.
 The total error was computed by assum-
ing independent error sources Saatchi et al. 
(2011b), as shown in Equation 1.

εAGB = (ε2measurement + ε2allometry + ε2
sampling + ε2

pre-

diction)
1⁄2

where: εmeasurement - inventory measurement er-
ror, εallometry - error associated with allometric 
equations to obtain AGB, εsampling - spatial error 

in upscaling lidar-derived estimates, εprediction - 
prediction error.

Results

Database and attribute selection

AGB ranged between 139 to 516 Mg‧ha-1, with 
a mean value of 296 Mg‧ha-1 and a coefficient 
of variation of 20%. The distribution of AGB 
values is platykurtic (kurtosis 1.075) with right 
asymmetry (0.672).
 Among the variations of measure of predic-
tor variables (backscattering, GLCM textures, 
Sentinel 2 satellite bands and vegetation indi-
ces), the CFS algorithm selected five variables 
for treatment 1, nine variables for treatment 2 

Treatment 1 r Treatment 2 r Treatment 3 r
SD (Backscattering 
band HV)

-0.094
Var (Backscattering band 
HV)

-0.107 Var (MAX band VH) -0.098

Var (Backscattering 
band HV)

-0.107 Var (ASM band VH) -0.096
Var (Backscattering 
band VV)

 0.154

Min (Backscattering 
band VV)

-0.106
Var (Backscattering band 
VV)

 0.154
Var (Correlation band 
VV)

-0.116

SD (Backscattering 
band VV)

 0.122 Var (MAX band VH) -0.098 Var (SAVI)  0.442

Var (Backscattering 
band VV)

 0.154 Max (PCA band VH)  0.111 Var (band 13)  0.283

Var (Homogeneity band 
VV)

-0.117 Var (band 2)  0.272

Ave (Correlation band 
VV)

 0.117 Var (band 3)  0.357

SD (Correlation band VV) -0.117 Var (band 4)  0.301
Var (MAX band VV) -0.116 Var (band 5)  0.331

Mín (band 12) -0.414

Pearson (r) linear correlation between AGB and predictor variables, which were selected by the 
CFS algorithm

Table 4

Note. Abbreviations: Var - variance representation of the variable covering the grid of 100 m or 100 pixels of 
10 m from Sentinel 1 and 2, Ave - represents the average of the variable within the grid of 100 m, SD - standard 
deviation of the variable, PCA - main components, MAX - maximum probability, Mín- minimum, ASM - second 
angular momentum, CFS - CfsSubsetEval algorithm, AGB - above-ground biomass.
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and 10 for treatment 3 (Table 4).
 The linear correlation between AGB and the 
variables selected by the CFS algorithm was 
weak, and some variables showed a negative 
correlation, indicating an inverse behavior to 
that of the forest AGB.

Biomass modeling

The mean AGB for the 286 plots was 297 
Mg‧ha-1, and the RMSE for the machine-learn-
ing algorithms in treatment 1 ranged from 
58.030 Mg‧ha-1 (Robust Regression) to 83.651 
Mg‧ha-1 (Random Tree) and for treatment 2 
the results were similar, where according to 
the RMSE the SMOreg algorithm presented 
the best performance (59.639 Mg‧ha-1) and 
the worst was by the algorithm Random Tree 
(85.369 Mg‧ha-1) (Table 5).
 However, most of the algorithms fail to cap-
ture the range of AGB, producing intermediate 
values, that are to a large extent insensitive 
to the values of predictor variables. This be-
havior of the algorithms ends up affecting the 
statistics that do not show great average errors 
and can lead to hasty conclusions on the per-

formance of the algorithms.
 For treatment 1 in which only the backscat-
ter variables are used, on average the RMSE 
is 62.358 Mg‧ha-1 or 21.011%, and for treat-
ment 2, on average the RMSE is lower, 54.569 
or 18.386%. However, when analyzing the 
boxplot (Figure 3), it is possible to see an im-
provement in the quality of the simulations in 
most models of machine learning when adding 
the texture information. 
 In Table 6 the balance of the algorithms can 
be set up against the addition of multispectral 
bands and indexes generated from the Sentinel 
2 satellite (treatment 3).
 It can be observed that in general the addi-
tion of multispectral information increased the 
performance of machine learning algorithms, 
with RMSE ranging from 47 to 70 Mg‧ha-1, on 
average an improvement of 3%.
 The algorithm that best estimated AGB for 
treatment 3, according to performance sta-
tistics, was the Robust Regression, which 
based on the idea of weighing the influential 
observations and assigning smaller weights 
to observations that could act as outliers. The 
algorithm was able to represent only 73% of 

Algorithm
Treatment 1 Treatment 2

RMSE (Mg‧ha-1) RMSE (%) RMSE (Mg‧ha-1) RMSE (%)
Multilayer Perceptron 59.928 20.191 64.257 21.650
SMOreg 59.745 20.130 59.639 20.094
Robust Regression 58.030 19.552 57.759 19.461
Decision Stump 60.917 20.525 60.864 20.507
Random Forest 63.889 21.526 62.403 21.026
Random Tree 83.651 28.185 85.369 28.763
M5P 59.887 20.178 61.696 20.787
REP Tree 59.887 20.178 59.994 20.214
IBk 60.001 20.216 60.157 20.269
KStar 60.066 20.238 69.821 23.525
LWL 59.945 20.197 65.717 22.142

Performance of the algorithms against the predictive variables of the treatment 1, use of 
backscattering values of the HV and VV bands of Sentinel 1 satellite and for treatment 2, addition 
of texture variables

Table 5
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the range of values, with the Random Tree al-
gorithm being the most suitable for the AGB 
simulation, being able to represent 100% of 
the forest variability with RMSE of 70.996 
Mg‧ha-1 or 23.921%.
   According to the boxplot analysis of the 
modeled AGB values (Figure 3) for the treat-
ment 1 it can be concluded that the algorithm 

that best represented the 
variability of AGB was 
Random Tree, which was 
able to represent 91.33% 
of the variability of values 
of AGB. For treatments 2 
and 3, the same algorithm 
was applied to the others 
with 99.81% and 100% 
of the amplitude values, 
respectively. In Figure 4 
it is possible to observe 
the relationship between 
the AGB observed and es-
timated by the algorithm 
Random Tree.
   For the calculation of the 
total error, no measurement 
errors were considered due 
to the lack of inventory 
data, We considered the 
following errors: allome-
try error of 40.2 Mg‧ha-1 
or 17.47% (D’Oliveira et 
al. 2012) which results in 
an error of 40.2 Mg‧ha-1 
or 17.47%, when consid-
ering the total AGB of 230 
Mg‧ha-1; sampling error of 
22.8% following (Saatchi 
et al. 2011b) and prediction 
error of 23.921% for the 
Random Tree algorithm. 
The total errors following 
the methodology of the 
present study is approxi-
mately 41.1%.

Discussion

Analysis of the database

Backscatter values (C band, HV and VV po-
larizations) were poorly correlated with AGB, 
as it is believed that saturation of this band 

Boxplot of the actual and estimated values in each of the treat-
ments

Figure 3

Algorithm RMSE (Mg‧ha-1) RMSE (%)
Multilayer Perceptron 60.721 20.459
SMOreg 51.766 17.441
Robust Regression 47.660 16.058
Decision Stump 54.471 18.353
Random Forest 50.304 16.949
Random Tree 70.996 23.921
M5P 51.660 17.406
REP Tree 56.279 18.962
IBk 52.546 17.704
KStar 52.196 17.586
LWL 51.665 17.408

Performance of the algorithms using the predictive variables 
of the treatment 3. Use of the backscatter, texture and with the 
addition of bands and by-products of the Sentinel 2 satellite

Table 6
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occurred because it was a site of high AGB. 
The L band presents a more appropriate wave-
length compared to the C band for the AGB 
estimates and this presents the same behavior 
for these estimates in tropical forests (Lucas 
et al., 2006), so it is natural that the C band 
presents form saturation analogous. Similarly, 
for an area near the city of Manaus, also in the 
Brazilian rainforest, Cutler et al. (2012) found 
r = 0.16 between the SAR image of the JERS-
1 satellite (L-band).
 This low correlation behavior is not verified 
in other low AGB soil cover. As presented by 
Castillo et al. (2017), which evaluated areas of 
non-forest uses (agriculture, aquaculture and 
urban areas) and mangroves, where correlat-
ed values   of AGB and backscatter were more 
strongly correlated, ranging from 0.28-0.84 
for data from the same satellite.
 The measure of variance of the soil-adjusted 
vegetation index (SAVI) was the variable that 
presented the highest correlation with AGB (r 
= 0.442), followed by the Sentinel 2 band 12, 
where the values are inversely related. More 
strongly correlated results (r = 0.69-0.72) were 
found by Castillo et al. (2017) when linking 
the multispectral bands of the Sentinel 2 satel-

lite with the AGB of mangroves. It is believed 
that this fact is related to the complexity of the 
forest structure in areas of tropical forest, com-
pared to mangrove areas.

Biomass modeling

The use of the GLCM texture associated with 
the HV and VV bands of the Sentinel 1 satellite 
provided an improvement in AGB estimates 
by most of the algorithms. Corroborating with 
these results, Cutler et al. (2012) adjusted a se-
ries of RNAs for the estimation of AGB of the 
tropical forest using data from Brazil, Malay-
sia and Thailand. It was used the multispectral 
data from the Landsat TM satellite, SAR im-
ages of the JERS-1 satellite and texture images 
(wavelet and GLCM analysis). It is possible to 
conclude that the inclusion of the texture in-
formation of the SAR images to the multispec-
tral data, improves the relation with the AGB. 
Kuplich et al. (2005) also emphasized that the 
addition of texture to the backscatter images 
increase the potential of using SAR images to 
estimate forest biomass.
 Thapa et al. (2015) found Lower RMSE val-
ues compared to the present study, they used 

Graphic dispersion and residuals of the values observed and estimated by the Random Tree al-
gorithm, being: A) treatment 1, B) treatment 2 and C) treatment 3, on the axis of the estimated 
values.

Figure 4
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SAR images derived from the ALOS PALSAR 
satellite and texture images for estimating 
the above-ground carbon stock in Indonesia 
through multiple linear regression. Only with 
the SAR images did the authors adjust the 
regression with RMSE of 45.64 MgC.ha-1, 
with the addition of the texture variables, the 
models improved, presenting RMSE between 
28.01 and 37.70 Mg.C.ha-1. For the treatment 
3 in which all variables of greater relevance 
according to the selection of attributes by the 
CFS method participated in the modeling, the 
improvement in results was perceptible, were 
on average 3% statistically, but it is much more 
visually representative, where the Random 
Tree algorithm was able to estimate the AGB 
in its entire range of values. 
 Applying similar methodology to this study, 
Castillo et al. (2017) found lower RMSE val-
ues by taking advantage of images of this same 
Sentinel satellite, linear regression and ma-
chine learning to estimate and map the AGB of 
mangroves and non-forest areas in the Philip-
pines. Using only the Sentinel 1 polarization, 
it found RMSE ranging from 27 to 55 Mg‧ha-1, 
and when using only the multispectral bands 
of the Sentinel 2 satellite, it found RMSE val-
ues varying from 27 to 48 Mg‧ha-1, a small im-
provement when comparing only with the use 
of SAR data, corroborating with the results 
obtained in the present study.
 These results found by Castillo et al. (2017) 
can be justify by the conclusion of Urbazaev 
et al. (2018) who used a machine learning ap-
proach, the hybrid tree Cubist, for the estima-
tion of AGB in Mexico. For this, it used the 
polarized images of ALOS PALSAR, DEM 
from the SRTM project, Landsat satellite im-
age mosaic and metrics obtained by LiDAR as 
predictor variables. Was observe an underesti-
mation of the higher AGB values, which justi-
fied the insufficient sensitivity of the satellite 
data to estimate the high AGB. 
 It is noteworthy the low RMSE for the three 
treatments and the good performance of the 
machine learning algorithms, result also found 

by Garcia et al. (2018) that emphasize that 
these techniques are attractive because it does 
not make explicit assumptions about the distri-
bution of the data and allow to model complex 
relations between the independent variables on 
the dependent one. Moreover, these algorithms 
have the advantage of being versatile and flex-
ible, besides not having to take into account 
some regression assumptions, such as data 
normality and homoscedasticity of the vari-
ance (Sanquetta et al. 2015).
 The quantification of total error considering 
the methodology of propagation of errors of 
Saatchi et al. (2011b) was 41.1%. It was be-
lieved that a non-quantifiable part of the errors 
in estimating AGB are related to soil and veg-
etation moisture conditions that were not fully 
account for by the lack of weather station in 
the study area, and which affect backscatter 
data. Another issue that can influence is the 
consideration of only part of the vegetation of 
arboreal size (above a certain minimum diam-
eter of inclusion), leaving, therefore, part of 
the tree stratum not being considered.They are 
high values considering the total error, which 
has practical implications, but they are likely to 
improve, replacing the method of obtaining the 
AGB and sampling, which will consequently 
affect the performance of the prediction algo-
rithms.
 It is known that saturation of the backscat-
ter occurs in bands with lower wavelengths in 
places with high AGB values, being indicated 
the use of the P band, since this one presents 
greater penetration and sensitivity with AGB 
(Saatchi et al, 2017). But unfortunately no sen-
sor from the current satellites provide free im-
ages with such a feature. However, the launch 
of the BIOMASS satellite covering this spec-
trum range is planned for 2020 and will pro-
vide quantitative information on the structure 
of the forest from space (Le Toan et al. 2011)
  Although this study was based on SAR, there 
are other options based on remote sensing that 
present great potential for the estimation of 
AGB and are expected to come into operation, 
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such as ICESat-2, NISAR, MOLI, and GEDI. 
One of ICESat-2’s products will provide field 
and canopy height estimates (ATL08), which 
will facilitate assessments and monitoring of 
biomass and forest carbon at global scales 
(Neuenschwander & Pitts 2019). The NISAR 
satellite will be of double frequency (Band S 
and L) and free availability. The GEDI and 
MOLI satellites promise imaging with a laser 
altimeter, which will greatly contribute to the 
development of new research.

Conclusions

C-band SAR data present potential for AGB 
estimation in tropical forest. The use of this 
technology demonstrates that it is possible to 
quantify biophysical parameters of the forest 
with precision (RMSE: 23,9%) and low cost, 
since these data are freely available, allowing 
this methodology to be reproduced at regional 
scales.
 The Random Tree algorithm stands out over 
the others in all treatments of input variables, 
being able to estimate the AGB in all the var-
iability represented by the tropical forest used 
as the study area.
 This study demonstrates the potential of us-
ing free data, allied to machine learning tech-
niques for the estimation of AGB. The meth-
odology allows the large-scale, regular and 
low-cost monitoring of tropical forest ecosys-
tems.
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