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Abstract Forest ecosystems are important in the carbon storage process. Thus, the 
objective was to investigate the effectiveness of the Simulated Annealing meta-
heuristic analysis for selecting variables to maximize the accuracy of the aboveground 
carbon prediction at the tree level. We used data from uneven-aged forests located 
in the Rio Grande Basin - Minas Gerais, Brazil, where 227 trees had their carbon 
stock measured. The classic Spurr linear model, stepwise linear regression and pan-
tropical coverage, Random Forest (RF), and the hybrid SARF method (Simulated 
Annealing and Random Forest) were used to estimate the carbon stock from the 
selection of variables for the different compartments of the tree (total, stem, branch, 
and leaf). The SARF consisted of the metaheuristic to select the variables to be used 
in the RF. These methods were evaluated by the root mean square error (RMSE), 
coefficient of determination (R²), and residual graph. As a result, the pan-tropical 
equation demonstrated superior performance than the Spurr model due to its greater 
homogeneity of residues. The stepwise technique reduced the number of variables 
and the error of the estimates, mainly for the validation set. SARF showed better 
adjustments than RF, as it reduced in on average 99.2% of the number of variables 
and 9% of the error of estimates considering all compartments. In general, variables 
such as volume, basic wood density, canopy projection area, diameter at 0%, 
diameter at breast height, height, and latitude contributed strongly to the carbon 
independent of the tree compartment. Among the methods, SARF is an alternative 
to the traditional method, as it can extract accurate information from a large data set.
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Introduction

Tropical forest ecosystems are an important 
pool of carbon sink, which partially regulates 
the exchanges flux of atmospheric CO2 (Baker 
et al. 2010, Pechanec et al. 2018). However, 
the changes of tropical land use impact the 
biodiversity and this natural carbon cycle 
(Mendoza-Ponce et al. 2018). Deforestation 
and forest degradation contribute with 15% to 
20% of global carbon emissions and tropical 
areas are highly correlated to this percentage 
(Vicharnakorn et al. 2014). In this context, 
the prediction of biomass and carbon stock 
of remnant forests is crucial to understand 
the global carbon cycle and possible actions 
to mitigate climate change (Heinrich et al. 
2021, Chinembiri et al. 2013, Vicharnakorn et 
al. 2014). However, there is a lack of studies 
describing the direct factors affecting the pool 
of carbon in the trees.
 An important condition for obtaining better 
estimates is the inclusion of appropriate 
structural variables that influence biomass 
(Goodman et al. 2014). Since diameter at 
breast height is often insufficient to produce 
good estimates (Guangyi et al. 2017), many 
authors have incorporated other variables in 
the models in order to increase their predictive 
capacity. Some examples are the variables 
related to the dimensions and architecture of 
the canopy (Goodman et al. 2014, Larsary et 
al. 2021), height (Feldpausch et al. 2012) and 
basic wood density (Chave et al. 2005). The 
use of these complementary variables can 
deliver more accurate estimates.
 Carbon stock modeling at individual trees 
level has high contribution to forest science. The 
trees biomass is traditionally determined based 
on inventory data and allometric equations 
(Burrows et al. 2000). These equations assume 
the relation of the power-law between biomass 
and the diameter of the tree (Enquist & Niklas 
2001). Based on this theory, several studies 
were made on allometric models considering 
the relationship between biomass and diameter 

(Zianis & Mencuccini 2004, Pilli et al. 2006, 
Návar 2009). Subsequently, the idea of a single 
explanatory variable (diameter) for biomass 
prediction was questioned, and the inclusion 
of other variables such as height and basic 
density were introduced (Chave et al. 2005, 
Vieilledent et al. 2012). Even so, several 
authors have studied the importance of other 
factors that influence the prediction of biomass 
(Burrows et al. 2000, Kuyah et al. 2012, Chave 
et al. 2014), mainly for tropical forests that 
represent a significant proportion of forests at 
global scope (Siddiq et al. 2021).
 Historically, regression models have been 
well suited to predict many forest variables 
so far. This technique is widespread due to 
high accuracy and quality of estimations. 
Today, computational intelligence methods are 
recognized to overcome some limitations of the 
regression models (Drake et al. 2006, Were et 
al. 2015). They achieve a greater generalization 
of estimates and less susceptibility of noisy and 
outliers (Nunes & Görgens 2016, Vieira et al. 
2018, Ou et al. 2019). These advantages have 
encouraged the application of computational 
intelligence in modelling the carbon stock, 
such as artificial neural networks (Vahedi 
2016, Dantas et al. 2021) and support vector 
machine (Gleason & Im 2012, Vafaei et al. 
2018). Promising data mining techniques  
have been used, including genetic algorithm 
(Hong et al., 2018), random forest (Silveira et 
al. 2019), simulated annealing or hybridization 
of these (Mafarja & Mirjalili 2017), to extract 
only relevant information for increasing the 
model prediction efficiency (Bagherzadeh-
Khiabani et al. 2016).
 The hybrid method consists of improving the 
algorithms performance for solving complex 
problems, combining a series of strategies. 
By combining at least two techniques, an 
increase in the performance of each technique 
is obtained. Since the search for regions not 
yet explored is expanded and the search in 
regions with the best solutions is intensified 
(Mafarja & Mirjalili 2017). Hong et al. (2018) 
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demonstrated the potential of hybridization 
in improving the performance of the random 
forest and support vector machine when 
using the genetic algorithm to obtain the ideal 
combination of variables. Other studies have 
also observed satisfactory performance when 
using hybrid methods, as in the modeling 
susceptibility to forest fires (Bui et al. 2017), 
classification of remote sensing images (Wang 
et al. 2017) and prediction of height and 
volume of trees (Reddy et al. 2017).
 In prediction models, resource selection is 
an important technique and is constantly used 
in data pre-processing. This technique reduces 
irrelevant and redundant information from a 
data set, increasing predictive performance 
and interpretation of results (Liu & Yu 2005). 
However, although the search for an optimal 
subset is challenging, meta-heuristics have 
produced good results in optimization problems 
(Mafarja & Mirjalili 2017). In the context 
of biomass and carbon stock estimation, the 
search for ideal models using machine learning 
can contribute to the quantification of these 
attributes (Pham et al. 2020). Thus, more 
accurate estimates can guarantee and support 
effective mitigation actions on climate change 
(Scolforo et al. 2015, Vahedi 2016).
 At this point, variables selection methods 
using computational intelligence have 
advantages for modeling any processes since 
they increase predictive performance, avoid 
overfitting and have higher computational 
speed (Day et al. 2020), when there is a huge 
sample space of possibilities and combination 
between variables. Recent studies have also 
focused on identifying and interpreting the 
variables that show the greatest influence on 
the behavior of the carbon stock in different tree 
compartments, such as stem, branch, leaves, 
and total. The main premise of the study is the 
approach of automatic selection of variables 
by the hybrid method, identifying advantages 
and disadvantages in its use. This may be 
particularly important when you have large 
amounts of data and need to turn it into useful 

information. In this scenario, data mining is an 
essential element in the knowledge discovery 
process, which consists of an iterative sequence 
of data pre-processing, data mining, pattern 
assessment and the presentation of knowledge 
(Han et al. 2011, Mafarja & Mirjalili 2017).
 In fact, the main challenge relies on adding 
only variables with high potential to explain 
the carbon stock. This combinatorial problem 
explores high dimensional data with complex 
pattern and scales. Multivariate analysis 
techniques are well suited to reduce a data set to a 
lower level (Sun et al. 2014, Labani et al. 2018). 
However, using computational intelligence 
it is possible to work with large-scale and 
non-linear data (Anifowose et al. 2014). 
Hence, the main objective is investigating the 
effectiveness of the Simulated Annealing meta-
heuristic for variables selection to maximize 
the accuracy of aboveground carbon prediction 
at tree level. Here we compare the regression 
model analysis and machine learning methods 
including the trees components of stem, branch, 
leaf and total carbon as variables. Finally, we 
also evaluate the pan-tropical equation (Chave 
et al. 2005) precision with our observed filed 
data.

Material and Methods

Study sites and tree sampling

The study site comprises the Rio Grande 
watershed located in the south of the state 
of Minas Gerais – Brazil with 86,110 km² 
or 14.7% of the state (Figure 1). Altitudes 
range from approximately 300 to 2,700 m. 
According to the climatic classification, the 
site has some classes as Humid B2, Humid 
B3, Humid B4 and Super Humid based on 
the Thornthwaite Moisture Index. The annual 
average temperatures are between 14ºC and 
20ºC, and the annual average precipitation 
was found above 1,500 mm (Carvalho et al. 
2008). The Rio Grande watershed is located 
in a transition area between two biomes, 
Cerrado (Brazilian savanna) and Atlantic 
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Forest, with high anthropization process. The 
characteristics of the predominant vegetation 
are Cerrado, Evergreen moist forest and 
Semideciduous tropical forests. The main 
types of soils are Argisol, Cambisol, Neosol 
and Latosol (Carvalho et al. 2008).

Data

A field survey of trees was conducted for 
aboveground carbon analysis at individual 
trees level. The division of the tree into 
at least stem, branches, leaves and total 
is almost universal, which defines our 
studied components. Further, we selected 
the municipalities of Comendador Gomes 
(north), Campanha (center) and Passa Quatro 
(south) for trees sampling procedure. These 
sites are the mid-point of each main vegetation 
class and presents the mean of the watershed 
tree diversity. The trees sample was carried 
out selecting systematically trees of each 

characteristic site. The phytosociological 
analysis highlighted the species with the 
highest IVI% (importance value index) in 
Comendador Gomes (Pterodon emarginatus: 
65.1, Copaifera langsdorffii: 44.3, Xylopia 
aromatica: 31.1, Cenostigma macrophyllum: 
26.4 and Guapira venosa: 12.5); Campanha 
(Calyptranthes clusiifolia: 15.6, Mollinedia 
widgrenii: 14.2, Machaerium nyctitans: 
13.9, Casearia sylvestris: 12.6 and 
Piptadenia gonoacantha: 12.5) and Passa 
Quatro (Eremanthus erythropappus: 26.2, 
Daphnopsis utilis: 13.7, Miconia trianae: 
11.3, Machaerium dimorphandrum: 11.2 and 
Dalbergia villosa: 10.8). A total of 227 trees 
was inventoried ranging in diameter classes 
of the most dominant species in each site. 
Given the three floristic groups: Cerrado 
(north), Semideciduous tropical forest 
(center) and Evergreen moist forest (south) 
(Table 1).

Figure 1  Location of the Rio Grande watershed in Minas Gerais state – Brazil.
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Table 1 Diametric distribution of the individuals 
selected in the sampling for the rigorous cubing 
procedure and collection of other morphometric 
variables. 

Diameter class
Floristic groups

Cerrado Semideciduous 
tropical forest

Evergreen 
moist forest

5-10 10 15 10
10-15 9 10 9
15-20 10 10 12
20-25 9 10 10
25-30 11 10 11
30-35 8 9 10
35-40 7 4 8
>40 13 1 11
Total / group 77 69 81
Total 227

 The tree measure variables were dbh - 
diameter at breast height, ht - tree height, cpa 
- crown projection area, hc - commercial bole 
height at smallest merchantable diameter (3 
cm), and cbh - crown base height. Field teams 
acquired latitude and longitude by GPS. 
Furthermore, the same portion of inventoried 
trees were submitted to rigorous cubing for 
quantifying volume and aboveground biomass 
of trees. To assist the wood density (wd) and 
carbon content analysis, field teams collected 
wood discs from different positions along tree 
stem (0, 25, 50, 75 and 100% of commercial 
height) and from branches (25 and 75% of 
length). Tree biomass is a function of wood 
volume, while carbon derives from biomass 
after laboratory analysis. This methodology 
followed the Food and Agricultural 
Organization of the United Nations - FAO 
(Picard et al. 2012).
 Although allometric modeling has 
been used since last decade, the variables 
selection procedure is still the key point. In 
spite of the high variability of mathematical 
data transformation (logarithmic, inverse, 
square root, second and third powers) and 
combination (basic arithmetic operations 
multiplication and division), we defined 
3 strategies of variable input usage for 
aboveground carbon modeling: S1) dbh 
and ht, S2) non-transformed variables 
(21 variables), and S3) non-transformed, 
transformed and combination of variables 

(985 variables). In addition to the modeling 
tests and performance, we previously split the 
database randomly in two independent sets 
for training (80%) and validation (20%).

Modeling aboveground carbon 
strategies

A wide variety of techniques has been 
used to estimate trees attributes. In such 
case, regression models and computational 
intelligence techniques are well suitable 
for forest data. These techniques have 
been widespread and our objective were 
test their performance. Figure 2 presents a 
flowchart with the methods and strategies 
used to estimate aboveground carbon. The 
challenge of the study was to verify which 
strategy to follow to identify the method 
and the explanatory variables that produce 
better estimates of the aboveground carbon. 
In this sense, they were evaluated from the 
most usual variables (dbh and ht) through 
regression models to a high set of variables 
(including transformations and iterations 
between variables) using machine learning 
algorithms. Several studies have observed 
that machine learning algorithms outperform 
other methods such as stepwise regression, 
principal component regression and partial 
least squares regression (Mouazen et al. 2010, 
Guo et al. 2015, Wang et al. 2018).
 Regarding the regression analysis, we take 
into account two strategies of modeling. At 
first, we associated the variables dbh and ht 
as inputs of the classical linear model (S1). 
Additionally, we tested only pure variables 
(22) and pure together with transformed 
variables (132) within stepwise linear 
regression for selecting variables (S2). We 
applied the pan-tropical coverage (Chave 
et al. 2005) only for modeling carbon total 
stock by using total dry aboveground biomass 
and 0.417 of carbon conversion factor. The 
coefficients of linear model were obtained 
by ordinary least squares (OLS) and multiple 
linear regression according the AIC criterion 
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for stepwise model building. Therefore, the 
variance inflation factor (VIF<10) was adopted 
to avoid multicollinearity effects using R 
package car (Fox et al. 2019).

C =    (0,0559*DBH2*HT*DB)*0,417 (1)

 Random Forest (RF) algorithm (Breiman 
2001) is a statistical method, non-parametric, 
very popular and effective for both regression 
and classification purposes, which can be 
attributed to its simple parameterization, high 
predictive performance and the ability to 
work with missing values, noise and high data 
dimension (Genuer et al. 2010, Hapfelmeier & 
Ulm 2014). In the context of the research, this 
algorithm was also chosen for aboveground 
carbon modeling and strategy S3 of data. The 
tuning parameters were established from 
previous tests: ntrees: number of trees in 500 
units; mtry: number of attributes to be chosen 
as 2; and, nodesize: number of observations 
at the end nodes of each tree as 5. The RF 
algorithm was performed 50 times and the best 
model was found. We implemented the RF in R 
package randomForest (Liaw & Wiener 2018).

 The last method 
tested was a hybrid 
of the meta-heuristic 
Simulated Annealing 
(SA) and Random 
Forest algorithm (RF). 
Simulated Annealing 
(SA) is a stochastic local 
search algorithm that, 
from an initial randomly 
generated solution, 
iteratively searches the 
neighborhood of the 
current solution. The 
solution consists of a 
vector dimensioned 
according to the problem 
under study. The 
implementation of SA 
demands the selection of 
some control parameters: 

the initial temperature, the definition of the 
evaluation function, the cooling schedule, and 
the stopping criterion (Abbasi et al. 2011). In 
this study, the SA defines an optimized set of 
variables for RF run, composing a relatively 
new method for modeling data in several fields 
of science named SARF (Figure 3). Generally, 
this procedure is robust for variables selection, 
in huge database, extracting only relevant 
variables from the system. The negative 
impacts of large number of variables for 
random forest accuracy are well-known. 
Consequently, variable shrinkage methods 
are strongly requested for improving its 
performance. The SA only selects variables 
and the solution performance is quantified 
by RF errors. Actually, the variable selection 
technique is a framework for highlighting only 
relevant information (Kavzoglu & Mather 
2002, Guyon & Elisseeff 2003).
 The automatic variable selection considering 
artificial intelligence is possible after the union 
of these algorithms. They explore numerous 
alternatives of combinations for a well-fitted 
final model. The deep searching for the best 

Figure 2  Methodological process with different strategies and methods.
Where: RF: random forest; SARF: Simulated Annealing and random forest. 
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subset reduces the algorithm efforts and escape 
from local optimum. The method does not 
test all possible combinations as brute force 
procedure. Therefore, the stop criterion is 
achieved under a certain number of iterations. 
In this context, the method assumptions seek 
a high-quality solution with low number of 
predictor variables. Consequently, the multi-
objective optimization problem consists of two 
components: the first is associated with the 
high accuracy solution; and the second with 
the minimum number of variables. However, 
the component’s weights are unbalanced due 
to distinct units and we standardized them to 
avoid such noises. The out-of-bag (OOB) is 
an error metric derive from RF performance, 
and the OOBmax is a utopic value from RF with 
all variables. The second part of the equation 
represents a ratio between the number of 
selected variables (n) and the total number of 
candidate variables tested (N). Unfortunately, 
the method limitation includes the selection of 
highly correlated variables and its stochastic 
procedure.

f(x) =    OOB
+

n  (2) OOBmax N
 Initially, the SA tunning was set as initial (T0 
= 106) and final (TF = 25) temperatures, 1% 
of the cooling rate, and the objective function 
was to minimize the mean square error and 
the number of variables (Equation 1). The SA 
algorithm starts with an initial solution (x) 
generated randomly, being represented by a 
dimensional vector with length according to the 
number of selected variables. At each iteration, 
a new candidate solution   is explored with 
random values. Then a better value is allowed 
and horst will be accepted under a certain 
probability by Metropolis criteria. The current 
temperature is reduced over the iteration which 
affects the accepting probability (Mafarja & 
Mirjalili 2017). Considering any new solution, 
RF run by selected variable with SA returns 
the OOB value. Finally, we run 50 times the 
method due to stochastic algorithm whose 
outcome involves some randomness and 
uncertainty.

Methods performance analysis

The data processing was performed using R 
software (Version 3.5.3 - © 2019 RStudio, 
Inc.) with Intel (R) Core™ i3-2100, CPU @ 
3.10 GHz processor, and memory of 8.0 GB 
(RAM). The quality of predictions can be 
defined as many metrics and indices. Therefore, 
according to the literature (Carreiras et al. 
2012, Vahedi 2016, Corona-Núñez et al. 2017), 
the most recurrent and unbiased statistical 
metrics are root of the mean square error 
(RMSE) and coefficient of determination (R²). 
We applied them for training and validation 
subsets analysis and formally they are defined 
as equations 3, 4 and 5, in which n: number 
of observations; i: sub-index of observations; 
Y: observed value of the carbon stock (kg),  Ŷ: 
estimated value of the carbon stock (kg).

RMSE =
1 n

√ (Yi-Ŷi )
2 (3)∑

n i=1
 

Figure 3  Methodological scheme of SARF algorithm. 
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RMSE % = RMSE
* 100 (4)Ȳ

RMSE = 1 - 

n
∑ (Yi-Ŷi )

2

i=1 (5)
n
∑ (Yi-Ȳi )

2

i=1

Results

Carbon stock variability

The database presented a high heterogeneity 
of carbon stock values independent of the tree 
compartment (Table 2). This behavior is proven 
through the characteristics of the studied area, 
which exhibits a transition from the Cerrado 
to Atlantic Forest biomes. These biomes have 
regions ranging from high density forests and 
large trees to regions with low numbers of 
individuals and small trees. Therefore, 
we may attribute the high variation 
in carbon stock (more than 100%) to 
regional differences which encompass 
distinct forest species composition 
and structure. This characteristic of 
the study area indicates a difficulty 
in obtaining good estimates in the 
modeling of the carbon stock, in all 
evaluated compartments.

Carbon stock modeling

In this study, we compared all the tested 
methods according to their modeling 
accuracy of carbon stock and selection 
of variables. The latter showed 

significant improvements in the carbon stock 
estimates, regardless of the tree compartment. 
In this respect, the relevance of this process is 
notorious. Therefore, all variables selected for 
the new developed models (via stepwise) and 
the adjustment of the Spurr model are shown 
in Table 3. The VIF values for the models 
developed via stepwise varied between 1.04 and 
7.37. The adjusted parameters for each model 
are shown in the table 3.
 In general, according to statistical metrics for 
all equations tested (Table 4) is verified that the 
equations showed low performance to estimate 
the carbon stock of the compartments (kg tree-

1), not efficiently following the observed values. 
This result shows that only the use of dbh and 
ht cannot accurately estimate the carbon stock. 
The pan-tropical equation provided greater 
precision in estimates for the total carbon 

Table 2 Analysis of the aboveground carbon stock (kg) in trees 
components and sites. 

Comp Statistics Comendador 
Gomes (north)

Campanha 
(center)

Passa Quatro 
(south)

Total
Minimum (kg/tree) 2.63 3.38 3.96
Mean (kg/tree) 198.59 93.22 174.76
Maximum (kg/tree) 1005.23 755.28 787.73
CV (%) 119.01 119.90 104.01

Stem
Minimum (kg/tree) 1.51 2.13 2.24
Mean (kg/tree) 86.34 47.41 99.79
Maximum (kg/tree) 376.54 406.67 652.67
CV (%) 113.60 123.65 113.82

Branch
Minimum (kg/tree) 0.51 0.78 1.01
Mean (kg/tree) 103.75 42.29 68.35
Maximum (kg/tree) 658.37 331.73 290.99
CV (%) 135.12 126.56 108.36

Leaf
Minimum (kg/tree) 0.29 0.14 0.25
Mean (kg/tree) 8.50 3.52 6.63
Maximum (kg/tree) 53.18 17.50 31.16
CV (%) 100.78 112.11 100.98

Table 3 Equations adjusted by the linearized Spurr model and the stepwise method to estimate the total carbon stock, in 
the stem, branches and leaves.

Comp Strategy S1 *Strategy S2

Total ln(c) = - 4.203 + 1.008 * ln( dbh2*ht) c = - 173.47 + 207.73 * vt + 277.96 * wdt + 1.33*cpa + 1.13*d25 

Stem ln(c) = - 4.299 + 0.942 * ln( dbh2*ht) c = - 114.86 + 229.27 * vtst + 180.13 * wdst + 2.01 * hc
Branch ln(c) = - 6.360 + 1.143 * ln( dbh2*ht) c = - 94.19 + 219.92 * vtb + 168.88 * wdb + 0.82 * cpa

Leaf ln(c) = - 4.228 + 0.649 * ln( dbh2*ht) c = 130.20 + 0.14 * cpa + 4.01 * vtb + 1.94 x 10-5 * X + 1.85 x                 
x 10-5 * Y - 0.97 * cbh + 0.70 * hc

Where: S1: dbh and ht input variable strategy; S2: non-transformed input variable strategy; ln: natural logarithm; c: stock carbon; dbh: 
diameter at breast height; ht: total height; vt: total volume; wdt: total wood basic density; cpa: crown projection area; d25: diameter 
at 25% of the tree; vtst: total volume of the stem; wdst: stem basic density; hc: commercial bole height; vtb: total volume of branches; 
wdb: branches basic density; X: longitude: Y: latitude: cbh: crown base height. * all parameters were significant at 95% probability.
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stock compared to the Spurr model. The Spurr 
model for the other compartments showed a 
high tendency to overestimate individuals with 
lower carbon stocks. The greatest performance 
of the equation suggested by Chave et al. (2005) 
can be attributed to the use of the basic density 
variable, which generally correlates with the 
carbon stock, improving the estimates.
 Using the stepwise technique, we developed 
an equation for each tree compartment (leaf, 
branch, stem and total) in order to predict the 
carbon stock (kg) at the tree level. Furthermore, 
the objective was also to find the most 
explanatory variables on the behavior of the 
carbon stock in the trees. Thus, when looking at 

the statistics of the models generated for training 
and validation data (Table 4), it was found that 
the S2 strategy presented slightly more efficient 
models for estimating the carbon stock, mainly 
for validation. Regarding the selected variables, 
in general, it is observed that the volume and 
basic density of the tree compartments, and 
the crown projection area obtained a high 
explanatory capacity for all compartments.

Importance of variables

The application of the RF algorithm in its pure 
form was used to estimate carbon stocks, to 
assess the contribution of each variable and, 
later, to make comparisons with the hybrid 
methodology. When analyzing the importance 
of the selected / used variables, it was found 
that volume and total basic density as well as 
volume and basic density of the stem showed 
greater importance values. In addition, among 
all compartments (leaf, branch, stem and total), 
transformed and combined variables were the 
most representative ones in the first positions.
 The SARF selected optimized subsets with 
different variables' numbers according to 
each tree compartment (leaf - 7, branch - 8, 
stem - 9, and total - 8) (Figure 4). The greatest 
contributions are attributed to the diameter at 
25% (d25), the total volume of the branches (vtb), 
the total volume of the stem squared (vtst2), and 
the commercial height times the total volume 
(hc * vt), for the respective compartments, 
leaf, branch, stem, and total carbon stock. 
Thus, it is observed that some variables have 
a higher frequency among the compartments, 
being the volume and the basic density 
both in its untransformed form and with the 
transformations and combinations with other 
variables. In addition, variables such as latitude, 
longitude, crown projection area, diameter at 
breast height, and diameter at 0%, height proved 
to be very representative in most of the analyzed 
compartments.
 From these results, we noticed that the proposed 
methodology with the multiobjective approach, 
allowed the SA algorithm to satisfactorily 

Table 4 Statistics of the adjusted models to estimate the 
carbon stock (kg) for all compartments. 

Comp Data Strategy RMSE RMSE% R2

Total

Training

S1-regression 76.29 51.94 0.83
Chave* 70.63 48.08 0.86
S2-regression 34.71 23.63 0.97
RF 25.30 17.23 0.98
SARF 21.24 14.46 0.99

Validation

S1-regression 88.42 57.87 0.81
Chave* 90.61 59.31 0.80
S2-regression 37.84 24.77 0.96
RF 67.17 43.96 0.89
SARF 59.43 38.90 0.91

Stem

Training
S1-regression 31.82 40.97 0.88
S2-regression 16.76 21.58 0.97
RF 11.46 14.76 0.98
SARF 10.79 13.89 0.99

Validation
S1-regression 82.35 94.01 0.48
S2-regression 22.31 25.46 0.96
RF 67.24 76.76 0.65
SARF 60.22 68.74 0.72

Branch

Training
S1-regression 59.32 79.92 0.67
S2-regression 22.12 29.80 0.95
RF 18.35 24.72 0.97
SARF 16.80 22.63 0.97

Validation
S1-regression 52.69 71.76 0.71
S2-regression 14.40 19.61 0.98
RF 28.65 39.03 0.92
SARF 21.98 29.94 0.95

Leaf

Training
S1-regression 5.62 88.12 0.39
S2-regression 3.69 57.80 0.74
RF 2.30 35.97 0.90
SARF 2.35 36.76 0.89

Validation
S1-regression 5.19 78.32 0.43
S2-regression 3.60 54.34 0.72
RF 3.78 57.14 0.69
SARF 4.13 62.43 0.63

Where: Comp: components; RMSE: root mean squared error; 
RMSE(%): root mean square percentage error; R²: coefficient 
of determination; RF: Random Forest; SARF: Simulated 
Annealing with Random Forest; *only estimated values from 
pan-tropical equation Chave et al. (2005) plus carbon factor.
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reduce the number of variables (on average 
99.2%) for the different compartments and to 
decrease the error (on average 9%) obtained 
by the prediction models (Table 3).  The SARF 
presented the best results according to the 
RMSE (%) in relation to the other models for 
the training data, with the exception of the leaf 
compartment. SARF showed improvements in 
the estimates for the validation data but was 
inferior to the S2 strategy. This result shows that 
only the variables dbh and ht cannot explain 
well the behavior of the carbon stock in the tree. 
For the R² values, the models presented similar 
responses for both training and validation data, 
except for the Spurr model. Although the RF 
showed a performance close to the SARF in 
the training set, the reduction in the number of 
variables provided a significant improvement in 
the estimates for most compartments of the tree.

When analyzing the residual dispersion graphs, 
it was observed that all methods, including 
the model suggested by Chave et al. (2005), 
showed a tendency to overestimate individuals 
with a lower carbon stock, both for the training 
set and for validation (Figure 5). Among the 
methods, the RF and SARF exhibited a more 
homogeneous residual distribution for the 
compartments, except the leaf compartment.
  The selection methods, stepwise and SARF, 
did not select the same set of variables for 
each compartment, however, some variables 
were the same: the total and stem basic density, 
crown projection area, total stem and branch 
volume, and commercial height. Most of 
these variables have high correlation values 
(Figure 6). This figure also shows the values 
of Pearson's linear correlations for the other 
selected variables, in which a similar behavior is 

observed between the correlation of 
the variables and the compartments. 
When comparing the models, S1 
and SARF, for each compartment it 
appears that the modeling of the total 
carbon stock stood out in relation to 
the other compartments due to the 
more homogeneous distribution. In 
addition, the SARF method performs 
well in the selection of explanatory 
variables and in the estimation of 
carbon stock. Therefore, these results 
justify the application of the SARF to 
estimate the carbon stock, in addition 
to contributing to the understanding 
of the variables that most influence 
the carbon stock. In the context of the 
selection of explanatory variables, 
the analyzed techniques found a 
relatively similar set, however the 
methods differed more in the results 
of the estimates between the set of 
training and validation.

Discussion

Carbon stock estimates present 
in native forests are important 

Figure 4  Ranking of selected variables for each tree compartment.
Where: d25: diameter at 25%, X * dbh: longitude times diameter at breast height, 
dbh: diameter at breast height, d0: diameter at 0%, cpa: canopy projection area, Y: 
latitude, g: sectional area, vt_b: the total volume of the branches, vt_b/d50: the ratio 
of the total volume of the branches and diameter at 50%, vt_st: total volume of the 
stem, d75: diameter at 75%, wd_st: basic stem density, g0.5: root of sectional area, 
X: longitude, vt_st2: the total volume of the stem squared, vt_st/hc: the ratio of the 
total volume of the stem and commercial height, hc: commercial height, d75

-1: the 
inverse of the diameter at 75%, c_ht: total height class, Y-1: the inverse of latitude, 
hc * vt: the commercial height times the total volume, X * cpa: longitude times the 
canopy projection area, wd: total basic density, d100: diameter at 100%. 
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to understand the role of 
ecosystems in the global carbon 
cycle, in addition to ensuring 
sustainable management of 
forest resources. In general, 
according to Marziliano et al. 
(2017), the quantification of 
the carbon stock is performed 
by means of biomass 
conversion standard factors. 
However, these values may 
vary according to the forest 
structure and environmental 
conditions, so their use 
could result in unreliable 
assessments. In this sense, the 
present study suggested testing 
different methodologies to 
select variables and estimate 
the aboveground carbon 

stock of native vegetation. According to this 
study's findings, the Spurr model did not 
present accurate carbon stock estimates for 
the compartments (Table 3). In contrast, the 
pan-tropical equation suggested by Chave 
et al. (2005) also evaluated for total carbon, 
stood out for showing greater homogeneity of 
residues. However, this equation had a high 
RMSE value. A similar result was obtained 
by Segura et al. (2018), who evaluated and 
compared the application of local and global 
models in tropical forests in the Colombian 
Pacific. The authors found that the equation 
proposed by Chave et al. (2005) and the other 
global equations analyzed showed a behavior 
of underestimating the biomass of trees. 
Thus, the authors point out the importance of 
developing tools for generating local models.
 Besides these models, the use of stepwise and 
algorithms for the construction of new models 
were also evaluated, in order to estimate the 
carbon stock between the tree compartments. 
The results obtained (Table 3) indicated that, 
in general, the models developed using several 
explanatory variables showed very different 
responses. The use of stepwise and machine 
learning algorithms provided improvements in 

Figure 5  Residual distribution of the best models generated in each group to 
estimate the carbon stock (kg / tree).

Figure 6  Pearson's linear correlation coefficients between the 
carbon stock of all compartment and the variables 
selected of the best selection methods used.

Where: dbh: diameter at breast height; ht: total height; vt: total 
volume; wd_t: total wood basic density; cpa: crown projection area; 
d25: diameter at 25% of the tree; vt_st: total volume of the stem; 
wd_st: stem basic density; hc: commercial bole height; vt_b: total 
volume of branches; wd_b: branches basic density; X: longitude: 
Y: latitude: cbh: crown base height; d100: diameter at 100% of the 
tree; c_ht: ; d75: diameter at 75% of the tree; d0: diameter at 0% of the 
tree; g: sectional area; d50: diameter at 50% of the tree.
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the adjustments, as they were able to explain 
the variance of the data by presenting R2 values 
between 63% and 99%. However, it is noticed 
that for some compartments the models 
generated showed high values of RMSE%. 
This result can be attributed to the different 
phytophysiognomies present in the area, 
since the stocks of biomass and carbon vary 
between species and forest types. In line with 
this statement, Tetemke (2021) reported an 
indirect increase in aboveground carbon stock 
by species diversity due to stand structural 
diversity in a dry Afromontane forest. Because 
carbon variation reflects the morphological 
characteristics that differ in the way of using 
light, in the competition relationships between 
trees and local conditions that, generally, lead to 
a substantial variation in estimates (Sanquetta 
et al. 2011, Marziliano et al. 2013, Coletta 
et al. 2016). In this way, Henry et al. (2011) 
evidenced that the development of allometric 
models with stratification by ecological types 
of forests is a highly effective way to improve 
estimates.
 Regarding the use of the RF algorithm, the 
robustness of the method was observed, which 
was not greatly affected by the inclusion of 
many variables related to each other. Wu et 
al. (2016) and Wu et al. (2018) evaluated the 
use of RF and other regression approaches 
to estimate the aboveground carbon stock. In 
these studies, the authors identified that RF 
provided accurate and satisfactory estimates 
with higher R² and low RMSE. Contrary to 
the results obtained in this study, in which 
the use of the stepwise approach presented 
better estimates, mainly for the validation set. 
However, it is emphasized that this technique 
has its performance affected by correlated and 
noisy variables (Gauchi & Chagnon 2001).
 Despite this, the use of the variable selection 
technique made by the meta-heuristic SA 
managed to contribute considerably in reducing 
the number of variables and in the error of the 
estimates. This behavior was expected since 
a multi-objective condition was established. 

Manimala et al. (2011) evaluated the use of the 
genetic algorithm and Simulated Annealing as 
methods to select characteristics and optimize 
the parameters of the support vector machine. 
The authors found good results for both 
algorithms. Nevertheless, they emphasize that 
SA produces good solutions in a short time.
 Regarding the variables that most contribute 
to estimate the aboveground carbon stock, 
there is a greater contribution of volume, basic 
density, crown projection area, diameter at 
0%, diameter at breast height (dbh), height 
and latitude. Figure 6 shows that most of these 
variables have high correlation values with the 
carbon stock. The dry weight or biomass and the 
volume are directly related to the carbon stock, 
since they are used to generate conversion 
factors and expansion of biomass. Magalhães 
& Seifert (2015) evaluated the differences in 
estimates with the standard value for carbon 
content (50%), used by the Intergovernmental 
Panel on Climate Change. According to these 
authors, small differences in the estimates were 
found. However, although the differences are 
small, these errors can increase as the estimates 
are expanded, for example, at the stand level.
 The dbh and ht variables are commonly 
used to estimate biomass and / or carbon stock 
due to their high relation (Vargas-Larreta 
et al. 2017, Sanquetta et al. 2018, Segura 
et al. 2018), this fact was also observed in 
this study. In addition to these findings, the 
wood basic density has great application in 
explaining the carbon stock, since this variable 
represents aspects related to the structure of 
the forest, such as the growth rate and the 
state of succession of the area (Ribeiro et al. 
2011). According to Chave et al. (2005), these 
variables have great explanatory power since 
they reflect the different sizes between trees 
and species. Among the selected variables, 
the sectional area (g) and the diameter at 0% 
(d0) were present for most of the analyzed 
compartments. The diameter at 0% was also 
found as a predictor of the biomass stock in 
the study by Henry et al. (2011). Regarding the 
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sectional area and, consequently, the basal area, 
Burrows et al. (2000) indicate that this variable 
is a good predictor of biomass and carbon, 
since it includes the effect of the number and 
size of trees. These authors also emphasize that 
the relationship between biomass and basal 
area can be applied to assist in the estimates, 
as this variable can be quickly measured. 
Magalhães & Seifert (2015) state that the 
biomass stock, and consequently the carbon 
stock, is a function of the density of the stem 
and the dbh; therefore, it is also associated with 
the basal area. According to the authors, the 
higher the proportion of basal area, the higher 
the proportion of biomass stock.
 The crown projection area (cpa) explains 
variations in individual tree growth, as their 
development is limited by the size of the crown 
and influenced by competition. Changes in the 
canopy of trees caused by interventions and 
variations in climatic and edaphic factors, are 
generally followed by an increase or decrease 
in biomass stock (Kuyah et al. 2012, Coletta 
et al. 2016). As an example, the tallest trees 
that stand out in the forest canopy have their 
growth reduced in height, while the growth 
of the branches horizontally increases. In this 
sense, adding variables related to crown can 
improve carbon stock estimates by capturing 
the tree's biomass variations (Goodman et al. 
2014), as seen in this study.
 Latitude is a geographical variable that helps 
explain different biomes and phytogeographic 
characteristics. Moreover, it is one of the 
geographical elements that most influences 
the climate (Mello et al. 2013, Scolforo et al. 
2015). According to the study by Scolforo 
et al. (2015), it was found that latitude and 
variation of the carbon stock distribution of the 
arboreous vegetation have a strong association 
in some biomes in the state of Minas Gerais 
(Brazil). The authors explain that as the latitude 
decreases, greater carbon stocks are found. 
Therefore, although most of the variables 
selected in this study are not usually addressed 
in forest inventories, the gain obtained with the 

inclusion of these variables in the estimates 
must be evaluated, since they present an 
association of carbon stock of the trees with the 
ecophysiological and environmental processes. 
Future studies could broaden the present 
study scope by integrating variables from 
several data sources, such as remote sensing 
and meteorological data. These variables can 
assist in generating predictive tools applied on 
a large scale in monitoring carbon stocks and 
implementing carbon conservation programs.

Conclusion

In view of the various methods evaluated, 
these presented different adjustment results. 
The model by Chave et al. (2005) presented 
a superior result to the Spurr linear model, 
which shows the importance of including basic 
density. Thus, the relevance of the interaction 
between variables is emphasized, since the 
methods of selecting variables showed good 
predictive capacity. stepwise and SARF 
provided good adjustments, with similar R² and 
minor errors for stepwise with the validation 
set. Among these, SARF was an alternative to 
the traditional method, since the application of 
stepwise is limited when it involves a greater 
number of variables than that of observations. 
The hybrid SARF method also stood out in 
relation to RF in its pure form, as it managed to 
reduce the error of the estimates with the use of 
an optimized set of variables. Demonstrating 
the relevance of the interaction of biometric 
variables, ecophysiological and environmental 
factors in the estimation of the carbon stock. 
In general, the most important variables for 
modeling the carbon stock in each compartment 
were volume, basic density, crown projection 
area, sectional area, 0% diameter, diameter at 
breast height, height and latitude, these being 
pure, processed or combined. Furthermore, 
they denote the applicability of Simulated 
Annealing in the selection of variables for 
modeling the aboveground carbon stock with 
Random Forest.
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