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How accurate is the remote sensing based estimate 
of water physico-chemical parameters in the Danube 
Delta (Romania)?
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Abstract The current paper estimated the physico-chemical properties of water in 
the Danube Delta (Romania), based on Sentinel 2 remote sensing data. Eleven sites 
from the Danube Delta were sampled in spring and autumn for three years (2018-
2020) and 21 water physico-chemical parameters were measured in laboratory. 
Several families of machine learning algorithms, translated into hundreds of models 
with different parameterizations for each machine learning algorithm, based on 
remote sensing data input from Sentinel 2 spectral bands, were employed to find 
the best models that predicted the values measured in laboratory. This was a novel 
approach, reflected in the types of selected models that minimised the values of 
performance metrics for the tested parameters. For alkalinity, calcium, chloride, 
carbon dioxide, hardness, potassium, sodium, ammonium, dissolved oxygen, 
sulphates, and suspended matter the results were promising, with an overall 
percentage bias of the estimates of +/- 10% from the observed values. For copper, 
magnesium, nitrites, nitrates, turbidity and zinc the estimates were fairly accurate, 
with percentage biases in the interval +/- 10% - 20%, whereas for detergents, led, 
and phosphates the percentage bias was higher than 20%. Overall, the results of the 
current study showed fairly good estimates between remote sensing based estimates 
and laboratory measured values for most water physico-chemical parameters.  
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Introduction

The European Union created a legislative 
context, the Water Directive Framework 
(European Parliament and European Council 
2000), in which all member states are 
required to have an up-to-date assessment of 
the quality of inland and coastal waters. The 
water quality is usually assessed through on 
a number of physico-chemical parameters, 
such as the concentrations of chlorophyll-a, 
dissolved oxygen, nitrogen (e.g. nitrites, 
nitrates, and ammonia) and phosphorus (e.g. 
phosphate) chemical species, to name just the 
most common measured parameters during 
monitoring programs (Ielenicz & Comanescu 
2006). Nevertheless, some major issues that 
the traditional monitoring programs are faced 
with comprise the high costs associated with 
field work, time consuming and the difficulties 
of physical access to the sampling sites. 
Moreover, another crucial aspect that the 
monitoring sampling programs of water quality 
are faced with is the reliability of the results 
per se (Dumitru et al. 2019).  Such parameters 
often characterize the water quality at the local 
level, hence faced with the issue of spatial 
representativeness, especially for extensive and 
diverse types of aquatic ecosystems (Niculescu 
et al. 2017). 

Given these drawbacks, the implementation 
of real-time monitoring program through 
traditional methods in remote and extended 
areas, such as the deltas and estuaries, is not 
always feasible. Therefore, a different type of 
complementary tools emerged during the past 
decades, the remote sensing techniques, which 
became an important instrument in assessing 
the water quality of various lotic and lentic 
habitats (Oteman et al. 2021). The advantages 
of using such complementary techniques are 
obvious: reduced costs and increased spatial 
and temporal representativeness, by covering 
larger areas more frequently compared with 
traditional surveys (Rahul et al. 2022). The 
main groups of water quality proxy parameters 
estimated using remote sensing data (i.e. 

optically active water constituents) are total 
suspended solids, coloured dissolved organic 
matter and water clarity, but also the optically 
inactive physico-chemical parameters (Topp 
et al 2019). The main technical challenges 
that remote sensing techniques application in 
aquatic habitats are faced with nowadays are 
the atmospheric and adjacency corrections, 
pre-processing steps, inversion based retrieval 
methods and optical water type classification 
(Palmer et al 2015). However, the application 
of remote sensing techniques outside the field 
of aquatic ecology covers a wide range of 
domains, such as agriculture, forestry, urban 
areas, biogeochemical parameters and sea ice 
levels (EU Commission, 2022a), as well as 
atmosphere products on pollution and gases 
(EU Commission, 2022c). 

The Danube River is the second largest 
river in Europe, with a total length of 2860 
km and a total mean annual discharge of 6500 
m3s−1 (Jugaru-Tiron et al. 2009). The Danube 
is a major contributor with fresh water and 
sediments to the Black Sea, through the largest 
deltaic system in Europe, the Danube Delta 
(Jugaru-Tiron et al. 2009). The Danube Delta 
consists of three branches and a vast fluvial-
marine contact zone, given the multiple splits 
and junctions of distributaries across the area 
(Zinevici & Parpală 2006). Across the Danube 
Delta there were counted approximately 
three hundred freshwater lakes, highly 
interconnected through a vast network of 
channels and canals, fuelled mostly with water 
from the Danube or just during flood events for 
remote water bodies (Gâştescu 2009).

The Danube Delta is a natural reserve, 
harbouring numerous wetlands and floodplain 
forests, which play a crucial role in lateral 
exchanges of nutrients with the adjacent water 
bodies. The Danube Delta is well-known for 
its biodiversity, comprising a large number 
of plant and animal species that unfortunately 
were negatively affected by the anthropogenic 
interventions over the past century (Zinevici 
& Parpală 2006, Gâştescu 2009). The human-
induced disturbances, such as eutrophication, 
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changes in water and sediment fluxes as a 
result of cut-off channels or frequent dredging 
activities for improving navigation, the fast 
development rate of local tourism, but without 
proper sanitation conditions, have affected the 
complex of ecosystems and implicitly the water 
quality in the Danube Delta (Jugaru-Tiron et 
al. 2009, Pacioglu et al. 2022). The effects of 
forestry management actions undertaken in 
the Danube Delta after 1960, which included 
the planting of willow species and Canada 
poplar could also have influenced the water 
physico-chemistry, although this aspect was 
understudied (Călugăr et al., 2017). For 
such reasons, the proper assessment of water 
quality is considered nowadays essential for 
a sustainable implementation of biodiversity 
conservation and ecological restoration 
programs, as well as for the local eco-tourism 
(Stoica et al. 2016). 
 Another challenging aspect in the application 
of remote sensing techniques in assessing 
the quality of inland waters is the types of 
statistical analyses employed whenever 
comparing the compatibility between remote 
sensing estimates and laboratory measured 
values of water physico-chemical parameters. 
The linear regressions still comprise the 
standard statistical techniques used to test 
directly the reliability of estimated values for 
a given physico-chemical parameter from 
remote sensing data with those measured 
in the field, usually associated with other 
statistical metrics to estimate the goodness of 
fit of residual points between estimated and 
measured values as a result of linear regression 
techniques (Karaska et al. 2004, Gholizadeh 
et al. 2016, Soomets et al. 2020). Whilst we 
consider this to be a continuous learning curve 
for the ecologists that apply such models, we 
equally acknowledge the lack of studies that 
compared the efficiency of various models 
employed. With increasing availability of 
remote sensing data and cheap computational 
power, in the last three decades a data-driven 
continuous expansion of statistical analyses 
methods occurred (Ogashawara, 2021). The 

main statistical approaches are, besides the 
traditional linear regression models, the 
machine learning models, such as artificial 
neural networks, support vector machines, and 
genetic algorithms. 

In the current study we have compared several 
families of machine learning algorithms, based 
on remote sensing data input from Sentinel 
2 spectral bands, to assess the goodness of 
fit between satellite-based estimates and 
laboratory measurements for 21 physico-
chemical water parameters, both optically 
active and inactive. We have further discussed 
the benefits and compared the output of several 
families of machine learning algorithms used 
to estimate the water quality parameters. The 
novelty from the current study is that for each 
physico-chemical parameter several families 
of machine learning models were created via 
automatic search for model parameters. From 
the array of created models, there were selected 
the optimal models that minimised the values 
of performance metrics for the tested water 
physico-chemical parameters. 

Materials and Methods

Dataset description

The current study employed the Copernicus 
Sentinel 2 multispectral sensor observations 
source for estimating the physico-chemical 
parameters of water collected from 11 sampling 
sites within the Danube Delta Biosphere 
Natural Reserve (Fig. 1 and Table 1). 

The remote sensing measurements used in the 
current study were based on the natural optical 
properties of water (Mobley 2022), which are 
disturbed by organic and inorganic dissolved 
and suspended matter in the aqueous medium 
and that influence the absorption and scattering 
of the electromagnetic radiation through water 
column. Often, in remote sensing techniques, 
the spectral reflectance is used as a proxy for 
estimating the concentrations of dissolved and 
suspended organic and inorganic matter in the 
aqueous medium. The spectral reflectance (ISO 
9288: 1989), a unit measure construct with 
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subunit values and expressed as sr-1 (steradian), 
is the ratio between the reflected and incident 
radiance over a surface, described by equation 1:

where: 
R – reflectance,
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– reflected radiance;
– incident radiance. 
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In Figure 2, the spectral reflectance was 
plotted for each sampling site. The spectral 
response for band 10 was related to the 
presence of cirrus clouds, hence always null 
for the bottom of atmospheric measurements, 
given two types of spectral reflectance: one 
measured at instrument level, and called top 
of the atmosphere, and the other measured at 
surface, and called bottom of the atmosphere. 
The latter type of spectral reflectance is 
obtained by removing distortions and noises of 
the electromagnetic interactions between light 
and atmospheric constituents. Approximating 
the surface spectral reflectance obtained 
from remote sensing satellite data to in-situ 
measured spectral reflectance comprises a 
continuously improving process, given that 
accurate estimations of various types of water 
quality physico-chemical parameters are based 
in turn on the reliability of spectral reflectance 
estimates at surface level (Brockmann et al. 
2016, Pahlevan et al. 2020, Pereira-Sandoval 

et al. 2020). In the current study we have used 
the atmosphere correction algorithm provided 
with Sentinel Application Platform Sentinel-2 
toolbox (Niculescu et al. 2017), which was in 
turn developed and maintained by the European 
Space Agency (Djamai et al. 2018, Steinmentz 
and Ramon 2018).

Eleven sampling sites, situated in the Danube 
Delta and Razelm - Sinoe lagoon complex were 
sampled during spring and autumn between 
2018 and 2020 (Fig. 1 and Table 1). Water 
samples were collected in autoclaved HDPE 
bottles from each sampling site and transported 
to the laboratory, where 21 physico-chemical 
parameters were measured (Annex 1). The 
remote sensing data were collected from 
the European Spatial Agency Open Access 
Hub, an online data repository and long-term 
archive system, which enables the access to 
Copernicus Programme space monitoring 
missions: Sentinel 1, Sentinel 2, Sentinel 
3 and Sentinel 5p. Sentinel 2 comprises a 

Figure 1 The locations of sampling sites on the map and the position of the Danube Delta in Romania 
(lower figure).
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polar orbiting twin constellation of satellites 
(Sentinel 2-A and Sentinel 2-B) deployed 
in a sun-synchronous orbit with a phase of 
180 degrees in-between. The average revisit 
time at mid-latitude is two-three days, with 
covering swaths of 290 km wide. Sentinel 2 
payload consists of a Multi Spectral 
Instrument covering visible, near-
infrared red (NIR) and short-wave 
infrared (SWIR) electromagnetic 
radiation, split into 13 spectral bands 
(van der Laan et al. 2016) (Table 2). 
The main objective of the Sentinel 2 
mission is to measure terrestrial land 
cover and coastal zones, by using a 
set of multiple spectral bands which 
capture the spectral response of light 
– vegetation interaction in the visible, 
near and short-wave infrared domain.
 Images were acquired in June 
2018, 2019, 2020 and November 
2018, 2019, 2020 (Table 3), from 
Sentinel Open Data Hub. Data 

comprised cloud free Sentinel 2 MSI L1C 
images overlapped closely with in-situ 
measurements dates and region of interest 
(Figure 3 and Table 2). There were cases when 
remote sensing data were not available for the 
exact day when water samples were taken, 

Figure 2 The spectral reflectance response of each Sentinel 2 spectral bands for in-situ sampling sites 
and seasons.

Table 2 Sentinel 2 spectral bands wavelength and spatial resolution.

Band 
name Type

Central 
wavelength 
(nm)

Resolution 
(m)

B1 Coastal aerosol 442 60
B2 Visible blue 492 10
B3 Visible green 558 10
B4 Visible red 664 10
B5 NIR Vegetation red edge 703 20
B6 NIR Vegetation red edge 739 20
B7 NIR Vegetation red edge 779 20
B8 NIR 833 10
B8A NIR Vegetation red edge 864 20
B9 NIR Water vapour 943 60
B10 SWIR Cloud cirrus 1377 60
B11 SWIR 1610 20
B12 SWIR 2186 20
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because of strong cloud coverage (> 10%). To 
overcome this issue, we have calculated the 
mean of remote sensing data parameters (i.e. 
pixel values of the Sentinel 2 spectral bands, 
for the two nearest dates when cloud free data 
were available). The images were re-sampled 
to 10 m as part of the pre-processing step and 
the mean of 3 × 3 pixels window was centred 
on the sampling site geographical coordinates 
and the mean values were used as model 

dependent variables. The pre-processing 
stage comprised the computing of the bottom-
of-the-atmosphere (water surface) reflectance 
values for the following spectral bands: B2, 
B3, B4, B5, B6, B7, B8, B11, B12, and using 
ESA SNAP Sentinel 2 toolbox (Table 2). 
These spectral bands were used as predictors 
in our models. The dependent variables were 
the organic and inorganic suspended and 
dissolved matter (Table 3).

Figure 3 Model performance ranking for the measured water physico-chemical parameters.

Table 3 Model parameterization of optimal model.

No.
Water 
quality 
parameter

Model Parameterisation Residual 
deviance

Predictor variable 
importance – 
spectral bands

1 Alkalinity Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.01546 B5, B12, B2

2 BOD Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

26.055 B5, B12, B2

3 Ca Stacked 
ensembles

Super learner: Generalised linear model
Weak learners: deep learning (1 model), deep random forest 
(1 model), gradient boosting (2 models), generalised linear 
model (1 model)

3.30073
Deep learning,
Generalised linear 
model,
Gradient boosting

4 Cl Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

1.7181 B2, B3, B12
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No.
Water 
quality 
parameter

Model Parameterisation Residual 
deviance

Predictor variable 
importance – 
spectral bands

5 CO2 Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

2.8269 B3, B2, B6

6 Cu Stacked 
ensembles

Super learner: Generalised linear model
Weak learners: deep learning (5 models) 0.515999 Deep learning

7 Detergents Deep learning
3 hidden layers
(3x100 neurons) with backpropagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.74094 B2, B5, B3

8 Hardness Stacked 
ensembles

Super learner: Generalised linear model
Weak learners: deep learning (8 models) 0.49331 Deep learning

9 K Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.44209 B3, B2, B6

10 Mg Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.14187 B11, B2, B12

11 Na Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.44419 B5, B2, B12

12 NH4 Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.00353 B5, B4, B3

13 NO2 Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.00031 B4, B2, B3

14 NO3
Gradient 
boosting

Regression forest,
25 trees 0.92622 B5, B2, B4

15 O2 Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.29176 B2, B4, B5

16 Pb Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.00986 B3, B5, B7

17 PO4 Deep learning
3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

0.00048 B2, B4, B3

18 SO4
Stacked 
ensemble

Super learner: Generalised linear model
Weak learners: deep learning (2 models) 1.44372 Deep learning

19 Suspended 
matter Deep learning

3 hidden layers
(3x100 neurons) with back propagation; activation function - 
rectifier without dropout; 10000 learning epochs

1.32201 B2, B5, B3

20 Turbidity Stacked 
ensemble

Super learner: Generalised linear model
Weak learners: deep learning (5 models) 3.00846 Deep learning

21 Zn Stacked 
ensemble

Super learner: Generalised linear model
Weak learners: deep learning (3 models) 3.85811 Deep learning

Statistical models

To test for multiple models simultaneously, 
we have used the machine learning framework 
H2O, through an R Application Programming 
Interface, and quickly set up the methodology 
for searching the optimal fitting parameters 
for a mainstream set of machine learning 
algorithms, as described below. The single 
most important feature of H2O consists in 
performing parameter cartesian or random 

grid search with respect to a pre-specified 
cost function, which alleviates the burden of 
manually fine-tuning the models.

Stacked ensemble models use a simple set 
of weak learners (i.e. models) and combine, 
usually within a model, called a super learner, 
which uses the predicted values from the 
weaker learners as input, in order to improve 
the predictions through cross-validation. The 
super learner model is independently specified 
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or selected from the given set of weak learners 
(Wolpert 1992, van der Laan et al. 2016).

Generalised linear models are used to 
relax the constraints assumed in common 
linear models, where the response and the 
residuals must satisfy certain conditions (i.e., 
linearity, independence, homoscedasticity). 
The generalised linear models use values 
generated by link functions, usually from an 
a priori known exponential distribution (i.e., 
differentiable and monotonic), parameterized 
with the original predictor matrix, as alternate 
predictors for the expected value of dependent 
variables (Nedler & Wedderburn 1972, Hastie 
& Tibshirani 1990, LeDell 2015). 

Deep learning (deep neural networks) 
comprise a class of artificial neural networks in 
which the inner layer architecture consists of 
an arbitrary number of sub-layers. Depending 
on the type of connection between neurons, 
data flow and aggregation functions of the 
output, a plethora of deep neural networks are 
currently in existence from an application-wise 
standpoint (Goodfellow et al. 2016).

Gradient boosting models entail an 
optimisation technique for approximating the 
minimum of the cost functions over a set of 
potential candidate ensemble models, which 
can be either regression or classification 
algorithms, usually in the form of linear or 
tree-based models. Iteratively, a better model 
is fitted by combining results obtained from 
multiple weaker similar models. The search 
stops when a certain criterion is reached or if, 
following a certain number of iterations, the 
loss functions are relatively numerically stable.

Distributed regression forest is a parallel 
extension of regression forest algorithm for 
parallel environments. It is similar to the 
traditional regression forest, but the decisions 
at each split node are softer and randomized for 
each parallel worker, creating regression trees 
using only a sample of the data The result is 
returned as an average of all regression trees 
(Geurts et al. 2006).

Extreme randomised trees comprise a type 

of random forest algorithms, where cut-points 
and attributes of a regression or classification 
tree are randomly selected and the results are 
averaged according to the minimum of an 
arbitrary loss function (Geurts et al. 2006). 

In terms of goodness-of-fit metrics we used 
residual deviance (Jørgensen 1997) to assess 
individual models and for the comparisons 
between observed and predicted values. 
Given the different measurement scales of 
physico-chemical parameters, the normalised 
root mean squared error, equation 2, was also 
used (here after NRMSE) and scaled by max-
min (Hyndman & Koehler 2006), along with 
percent bias (PBIAS).

where

The procedure for validating the results 
included splitting the datasets into train and test 
sample, about 1000 replicates for each type of 
model, afterwards selecting the model which 
scored better on NRMSE. We also used mean, 
standard deviation and confidence intervals 
obtained through bootstrapping (Efron and 
Tibshirani 1993) to compare the estimates with 
the measurements in the field for each season-
year combination (Table 4).

Results

The algorithms for selecting the most reliable 
models minimised the residual deviances on a 

(2)

(3)

(4)
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batch of several families of potential models. 
A cartesian search for parameter selection for 
each model iteration was defined: learning rate, 
number of sub-samples, number of iterations, 
stop criterion for minimization, number of 
maximum hidden layers, and the number of 
maximum artificial neurons per layer. The 
best models were ranked (Fig. 3), based on the 
minimum residual deviance. The deep learning 
method, along with the stacked ensembles, 
dominated the pack of selected models. Table 3 
presents for each parameter the corresponding 
most reliable models and it can be observed 
that the stacked ensembles also comprise a 
generalised linear model composite of deep 
learning results. The results were expectable, 
given that deep learning models are proved to 
be universal approximates, when parameterized 
with an optimal set of weights and can be used 
to fit any type of non-linear function. However, 
the neural networks require a representative 
number of input data, and in the current case 
it can be observed that the residual deviance 
varied greatly among model estimates, mainly 
for those water parameters that were zero-
inflated and with outliers (i.e. detergents and 
CO2). Also, as other types of machine learning 
algorithms, deep learning models are sensitive 
to the number of predictors versus observation 
ratios. The spectral bands B2 (visible blue 
light), B3 (visible green light), B4 (visible red 
light), B5 (near infrared) and B12 (shortwave 
infrared) were among the most important top 
variables (Table 3). 
 To compare how well the models fitted the 
data, a plot of observed versus predicted was 
graphically constructed, using a theoretical 
line of best fit, NRMSE as the numerical 
goodness of fit metric (Fig. 4). For alkalinity, 
calcium, chloride, carbon dioxide, hardness, 
potassium, sodium, ammonium, dissolved 
oxygen, sulphates, and suspended matter the 
overall percentage bias of the estimates was 
+/- 10% from the observed values. For copper, 
magnesium, nitrites, nitrates, turbidity and zinc 
the percentage bias varied in the interval +/- 

10% - 20%, whereas for BOD, detergents, led, 
and phosphates the percentage bias was higher, 
with maximum above 90% for detergents (Fig. 
4 and Table 4). The highest deviations from the 
predicted values for the category of parameters 
with the lowest percentage bias (i.e. +/- 10%), 
was recorded for carbon dioxide, with values 
either being underestimated or overestimated 
(Table 4). The explanation for this high 
deviation of carbon dioxide could be the 
exclusion of seasons or years as predictors 
during the model parameterisation. For the 
parameters where the percentage bias varied in 
the range +/- 20%, the deviations from observed 
values are explicable either by values close to 
0 or by outliers with one order of magnitude 
greater than 0 (e.g. detergents, Table 4).

Discussion

Overall, the employed models were a bag 
of mixed results; for few parameters (i.e., 
alkalinity, calcium, chloride, carbon dioxide, 
hardness, potassium, sodium, ammonium, 
dissolved oxygen, sulphates, and suspended 
matter) the goodness of fit measure indicated 
reliable approximations for in-situ observations, 
whereas for other models it failed (Fig. 4 and 
Table 4). The example of biological oxygen 
demand is relevant for the current study, given 
the estimate of the employed models were 
only fairly accurate, whereas previous studies 
(Rivera et al. 2014), which used a combination 
of Sentinel 2 data, multispectral data collected 
in-situ from a spectral instrument mounted on 
unmanned aerial vehicle, and water samples, 
it offered better fits. Data collected from 
unmanned aerial vehicle was used to calibrate 
data collected from Sentinel 2, before using 
any estimation techniques on in-situ versus 
remote sensing data. Other researchers reported 
excellent fits (Kabolizadeh et al. 2022), by using 
a combination of artificial neural networks and 
spectral indices (i.e. spectral bands aggregation) 
for water alkalinity, calcium, chloride, 
potassium, sodium, sulphates, suspended 
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matter and turbidity, with strong correlations 
between observed and predicted values. These 
authors also discarded the spectral bands with 
lower resolution (> 10 m per pixel), a venue 
that we consider an interesting area for further 
research. High outliers in observed data (e.g. 
possibly detected with an arbitrary threshold 

of ±3 standard deviations from the mean), may 
induce strong biases in predictions. This issue 
can be solved either be eliminating the outliers, 
but possibly losing valuable information or by 
generating models on homogenous spatial-
temporal sub-samples, such as models for each 
homogenous water type and time frame of data 
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collection, where 
the likelihood of 
observing outliers 
is greater compared 
to the entire sample. 
In the latter case, 
s u p p l e m e n t a r y 
spatial data could be 
entered, such as the 
proximity to point 
or diffuse pollution 
sources (e.g., 
towns, agricultural 
terrains) to 
improve the model 
efficiency.

The current 
research based on 
Sentinel 2 data for 
estimating inland 
water quality 
parameters is 
divided among 
scientists that either 
derived empirical 
models to estimate 
these parameters 
and those that rather 
prefer to enhance 
the Sentinel 2 data 
attributes, such 
as by deriving 
L3 data products 
to be used as 
predictors. Previous 
c o m p a r i s o n s 
between in-situ 
m e a s u r e m e n t s 
and remotely 

Dan
Highlight
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detected concentrations of chlorophyll-a, 
turbidity and suspended matter highlighted 
that despite good reliability at local level, the 
extrapolation to other biogeographic areas 
was cumbersome, due to a complex set of 
local specificities (Soltana et al. 2017, Alvado 
et al. 2021, Rahul et al. 2022). This was the 
rationale for defining the optical water types 
as an intermediary L3 product before applying 
the models, suggesting that the spectral 
reflectance from Sentinel 2 data is a reliable 
method that improves the robustness of water 
physico-chemical parameters estimates. Other 
studies (Alvado et al. 2021, Rahul et al. 2022) 
suggested an algorithm for differentiating 
between the organic and inorganic components 
of total suspended matter with the aid of a 
specialised software tool that created suitable 
sets of spectral indices as predictors of water 
quality. It was also argued that Sentinel-2 
data, although lacking the high resolution 
needed for the proper assessment of physico-
chemical parameters in small water bodies, is 
still suitable for measuring the water quality as 
required by Water Framework Directive and 
to compensate for the high cost and human 
labour required during routine monitoring 
programs (Soltana et al. 2017). In the Danube 
Delta several previous studies showed 
promising results. One study (Niculescu et al. 
2017) mapped the wetland habitats from this 
region and assessed the anthropogenic effects 
on local ecosystems, by combining Sentinel 1 
and Sentinel 2 data. The potential of Sentinel 
2 data for discriminating between coastal and 
river water types at the Danube Delta-Black 
Sea confluence was successfully employed 
(Dumitru et al. 2019). Based on Sentinel 1 
and Sentinel 2 time data series data fusion, 
an automatic algorithm was implemented to 
overcome the issue of cloud presence (Oteman 
et al. 2021). Also, based on Sentinel 1 and 
Sentinel 2 data (Oteman et al. 2021), there 
were measured the areas covered by reed 
belts within the Danube Delta and the zones 
covered by other types of local vegetation were 

efficiently identified, overcoming the inherent 
issues induced by atmospheric phenomena 
and/or adjacency effects. 

A cumbersome aspect whenever using remote 
sensing data is the necessity of overlapping 
in-situ collection dates with the dates when 
the satellites actually passed over the area of 
interest. The Sentinel-2 satellites have a mean 
revisit time between two passes over the same 
area of two-three days and the cloud presence 
could negatively impact the quality of data. To 
overcome this issue, a mean aggregation of 
two adjacent by date passes was used, creating 
a suitable time frame for the in-situ collection 
of samples. Whereas various water quality 
parameters can vary greatly not only between a 
few days’ window, but also over a daily basis, 
we considered this method to be suitable when 
no auxiliary data are available. 

Another type of issue encountered in 
the current study was the limited dataset, 
a situation that occurs frequently during 
sampling programs undertaken in remote 
locations and characterised by arduous 
working conditions. In order to overcome this 
issue, several techniques of artificially created 
datasets can be constructed, by exploring 
promising methods in the field of synthetic 
data generation (Wolpert 1992, Smith et al. 
2009, Soltana et al. 2017, Zhang et al. 2018).

Conclusion

In the current study, Sentinel-2 remote sensing 
data were used to estimate 21 water quality 
parameters from eleven sampling sites situated 
in the Danube Delta (Romania) using remote 
sensing spectral reflectance as predictors in 
order to assess the suitability of Sentinel 2 
MSI data and to compare the correspondence 
to those measured in laboratory. Due to 
small sample size of in-situ measurements, 
the observations were pooled within a 
single dataset and several machine learning 
algorithms were further applied with mixed 
results, given the high number of null values 
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and some outliers. For certain parameters (i.e., 
alkalinity, calcium, chloride, carbon dioxide, 
hardness, potassium, sodium, ammonium, 

dissolved oxygen, sulphates, and suspended 
matter) the results were promising, with an 
overall percentage bias of the estimates of 
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+/- 10% from the observed values. For other 
parameters (i.e., copper, magnesium, nitrites, 
nitrates, turbidity and zinc) the estimates were 

fairly accurate, with percentage bias in the 
interval +/- 10% - 20%, whereas for detergents, 
biological oxygen demand, led, and phosphates 
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the percentage bias was higher, with maximum 
recorded above 90% for detergents. The 
current study also employed for each physico-
chemical parameter several families of 
machine learning models that were created via 
automatic search for model parameters. This 
was a novel approach, reflected in the array of 
created models that were selected based on the 
optimal models that minimised the values of 
performance metrics for the tested parameters.
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