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Prioritizing conservation areas based on contributions 
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Abstract The depletion of forest biodiversity arising from insufficient conservation 
of resources due to wood extraction, overgrazing, fire, and land use presents a 
significant challenge in the Mediterranean region. It becomes crucial to identify 
priority conservation areas for safeguarding biodiversity.  We used plant species data 
taken from 800 plots in the Kuyucak mountain district, a typical Mediterranean forest 
ecosystem in Türkiye and maps of seven potential environmental predictors: elevation, 
aspect, slope, head index, topographical position index, landform characteristics, and 
bedrock geology. To assign priority areas for the conservation, local contribution to 
beta diversity (LCBD) and relative contribution to total rarity (RIRR) were examined 
with community metrics and environmental predictors, respectively. Correlation 
results showed that LCBD was positively related to rare species richness but 
negatively related to common species richness. RIRR was significantly associated 
with all the community metrics. According to the results of Random Forest regression 
models, elevation was the most important variable of LCBD, followed by slope, heat 
index, and pebblestone. For RIRR, the most contributed variables were elevation, 
heat index, limestone, and slope, respectively. The LCBD and RIRR Random Forest 
regression models were extrapolated along the Kuyucak mountain district, resulting 
in the creation of potential distribution maps for both LCBD and RIRR. Subsequently, 
from these maps, two distinct conservation value maps have been developed for the 
Kuyucak mountain district based on four conservation priority classes (Priority Class 
1, Priority Class 2, Priority Class 3, and Priority Class 4): one employing a conservation 
cost approach and the other applying an ecology-centered approach. The results 
suggest that areas with elevated values of both LCBD and RIRR values are primarily 
situated below 1100 m on steep valley slopes, characterized by the presence of karstic 
limestone and intricate terrain. Compared to other areas, prioritizing the protection 
of such areas can provide greater benefits in contributing to ecological uniqueness. 
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Introduction

Biodiversity or biological diversity is the 
key to building sustainable development as 
it is directly linked to health, dynamism, and 
productivity of the ecosystems (Gao et al. 2021, 
Lin et al. 2022, Oliveira et al. 2022). Therefore, 
spatial distribution maps of biodiversity enable 
the most fundamental information layers of 
ecosystem-based management, an approach 
which considers the whole ecosystem, instead 
of managing target species. To determine spatial 
variations of biodiversity, majority of current 
management plans use distribution maps or 
models of alpha diversity (Lasram et al. 2015).
 Alpha diversity refers to variety of species 
that can be measured at a specific site or location 
using various metrics. Among these metrics, 
the most widely recognized ones are species 
richness (Peet 1974), Simpson index (Simpson 
1949), and Shannon’s entropy (Shannon 
1948). While species richness indicates the 
number of species present, the latter two 
combine measures of richness with abundance 
or incidence data (Liu et al. 2007, Abrams et al. 
2021, Özkan et al. 2022). The metrics used for 
assessing alpha diversity can also be applied 
to measure gamma diversity. Gamma diversity 
characterizes species diversity across a district 
or region, spanning a larger area compared 
to a single site. Essentially, both diversity 
measures fall under the concept of inventory 
diversity, sharing similar characteristics while 
differing primarily in scale (Jurasinski et al. 
2009, Zhang et al. 2014).
 Beta diversity is denoted as the divergence 
in species composition among assemblages, 
communities, or sites (Whittaker 1960). 
Research on beta diversity has recently 
increased to better understand the foundations 
underlying species diversity distribution 
in natural ecosystems. However, it is more 
challenging to create biodiversity assessment 
and conservation strategies using beta diversity 
than alpha diversity (Ferrier et al. 2007, Zhang 
et al. 2014).

 Beta diversity is defined through two 
approaches: a directional approach and a 
non-directional approach. To the best of our 
knowledge, only one directional approach has 
been proposed, attributed to Nekola and White 
(1999), hinging on the slope of similarity decay 
in species composition concerning spatial 
distance. Non-directional beta diversity indices 
have been suggested by multiple researchers. 
Among these, the most established one, 
introduced by Whittaker (1960), is the beta 
index of species richness as β=α/γ, where α is 
the mean number of species within ecological 
units or study sites in the region, and γ is the 
total number of species in the region. 
 Other popular non-directional indices 
based on Shannon’s entropy belong to 
additive (Hα+Hβ=Hγ) and multiplicative 
(exp(Hα)×exp(Hβ)=exp(Hγ)) approaches that 
is identical with Whittaker’s formula. Beta 
diversity is unity when all communities are 
identical and, it is equal to the number of 
communities when all N communities are 
completely distinct and equally weight (Jost 
2007, Chao et al. 2012). In these approaches, 
all beta diversity measures are derived from 
alpha and gamma indices. 
 Magurran (1988) presented the option 
to compute beta diversity independently 
from gamma and average alpha, specifically 
through dissimilarity indices such as Sorensen, 
Jaccard, and Morisita. However, all those 
techniques cannot provide a beta diversity 
value for a community or site. As Ellison 
(2010) highlighted, it would be more practical 
to have a method for estimating beta diversity 
specifically for a community or site without 
needing prior alpha and gamma calculations. In 
this context, Legendre and De Cáceres (2013) 
introduced the concept of local contribution 
to beta diversity (LCBD). This method uses a 
site-by-species abundance or presence-absence 
data set to estimate the total variance within 
a community, which can be decomposed into 
contributions of individual sites and species 
to overall beta diversity. In essence, LCBD 
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provides a value that represents beta diversity 
unique to each community, sampling plot, or 
location.
 Based on the information presented so far, 
it seems that among the various components 
of diversity, beta diversity stands out as a 
crucial numerical indicator. It can support 
decision makers in identifying and prioritizing 
conservation areas and help guide effective 
management strategies However, beta diversity 
is not the sole criterion employed to evaluate 
the conservation value of living communities. 
Other supplementary criteria encompass rarity, 
naturalness, and threat of human interference 
(Margules & Usler 1981). 
 In comparison to naturalness and threat of 
human interference, rarity displays a closer 
link with beta diversity, as its core objective 
revolves around estimating the value of a 
community or site based on the presence 
of rare species at regional or global scales. 
Rarity is the fundamental facet of biodiversity 
(Le Bagousse-Pinguet et al. 2021, Riva & 
Mammola 2021). The rarer a species, the more 
valuable it is (Hall et al. 2008). This correlation 
stems from the heightened risk of extinction 
faced by rare species in contrast to common 
ones (Flather & Sieg 2007, Södersröm et al. 
2007). As a result, localities rich in rare species 
bear greater significance in conservation 
strategies than those housing common species. 
Several indices have been proposed to estimate 
local rarity (Borges et al. 2000, Dennis et 
al. 2000, Palmer et al. 2002, Fattorini 2008, 
Hussain et al. 2008, Mendes et al. 2008, Leroy 
et al. 2012, Özkan 2016). Among these, the 
index of relative rarity (IRR), proposed by 
Lorey et al. (2012), is the most widely used, 
as it can be employed with various weighting 
methods considering a comprehensive species-
by-site dataset.
 In Türkiye, the Mediterranean region stands 
out as a reservoir of remarkable plant diversity, 
primarily due to the significant heterogeneity 
within its diverse habitats. This considerable 
diversity is rooted in the region's expansive 

elevational gradient and complex geological 
and geomorphological features (Médail & 
Quézel 1997, Özkan et al. 2010, Şekercioğlu et 
al. 2011, Koç et al. 2018). However, much of 
the Mediterranean region has been subjected to 
degradation, reflecting the complex interplay of 
anthropogenic and environmental pressures. The 
region's rich history of human settlement has led 
to extensive transformation through activities 
such as logging, burning, and overgrazing over 
centuries (Velmoere et al. 2003, Fontaine et al. 
2007). These compounded impacts have been 
further exacerbated by ongoing climate change, 
amplifying the ecological challenges faced by 
the region's ecosystems. In this context, research 
focused on mapping potential distribution areas 
for community or site attributes, such as rarity 
and diversity, becomes crucial. By providing 
insights into the spatial distribution of critical 
ecological characteristics, these studies play a 
pivotal role in informing effective management, 
conservation, and restoration strategies 
tailored to the unique needs of Mediterranean 
ecosystems.
 The goal of this study is to identify the 
priority conservation areas in the Kuyucak 
mountain district located in the Mediterranean 
Region, Türkiye, examining the variations in 
relative contribution to local rarity (RIRR) and 
local contribution to beta diversity (LCBD) 
in relation to environmental attributes and 
creating their distribution models.

Materials and Methods

Study area

The Kuyucak mountain district, located in the 
transition zone of the Mediterranean region, 
lies at 370 29’ 17’’ N latitude and 300 59’ 46’’ 
E longitude, covering an area of 984.5 km2. 
Elevation ranges from 250 m to 2500 m a.s.l. 
(Fig. 1). The predominating parent materials 
include limestone, sandstone, pebblestone, 
ophiolite, dolomite are the predominating 
parent materials. Locally also basalt, chert, 
shale, travertine, and vulcanite are present.   
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In the district, a transition climate prevails between 
the Mediterranean climate and continental 
climate, with an average annual rainfall of 950 
mm. Heavy rains occur in November, December, 
January, and February, while the dry period 
extends from the beginning of June until the end 
of October. The most arid and hottest months are 
July and August. The mean annual temperature is 
13.10C and the average relative humidity is 54% 
(Özkan & Gülsoy 2009).
 The flora of the district is composed of 
63 families, 225 genera and 478 species 
(Özçelik & Korkmaz 2002). The study area is 
covered by approximately 50% Mediterranean 
mountain forests, mainly composed of Pinus 
brutia var brutia (Brutian pine), Pinus nigra 
subsp. pallasiana (Crimean pine), Ouercus 
spp. (Oak), Juniperus spp. (juniper) and some 
relic stands of Cedrus libani (Lebanon cedar) 
(Özkan & Gülsoy 2009).

Research methods

Community and species metrics 
The Kuyucak mountainous district is 
characterized by a diverse topography 

dominated by karstic features including 
canyons, dolines, uvalas, poljes, and lapies. 
Due to this intricate topography, significant 
variations in vegetation composition can occur 
even in areas that are geographically close 
to each other. Therefore, data were collected 
using a preferential sampling with nested plot 
selection approach. Two hundred sampling 
areas, each 1x1 km² in size, were selected to 
represent the district, avoiding disturbed areas 
and accounting for factors such as elevation, 
aspect, landform characteristics, and parent 
material. Within each sampling area, four 
20x20 m plots were established to represent 
the overall vegetation. Perennial vascular plant 
species were recorded at each plot along with 
geo-referenced data.
 Upon completing the field survey, we 
compiled a plot-by-species presence-absence 
(PS) dataset. From this dataset, we initially 
tabulated species frequency or incidence 
data (i.e., the number of plots occupied by 
the jth species, denoted as Ij) (see Table S1 
in the Supplementary). Cluster analysis was 
conducted using Sørensen distance measure 

Figure 1 Locations of the sampling sites across the Kuyucak mountain district.
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and a flexible beta linkage approach (with 
beta= –0.25) to define cluster groups in the 
PS dataset (McCune & Mefford, 1999). The 
clustering process started with a minimum 
of two and a maximum of eighteen groups. 
To determine the most informative number 
of clusters, we employed a multiresponse 
permutation procedures (MRPP) test using the 
Sørensen distance measure and a natural group 
weighting factor (Fontaine et al. 2007). The 
distinction between groups was assessed using 
a test statistic (T) and the chance-corrected 
within-group agreement (A). A high negative 
T-value indicates a greater degree of separation 
between the groups, while a low negative 
T-value suggests less separation. The optimal 
number of groups is associated with the lowest 
negative T-value. The A-value ranges between 
0 and 1 and reflects the degree of homogeneity 
or heterogeneity within the groups. The ideal 
number of groups is characterized by a high 
A-value (Everhart et al. 2008, Brinkmann et al. 
2009, Naftal et al. 2024).
 Subsequently, we calculated the species 
specialization index (SSIj)  for each cluster 
group (see Table S2 in the Supplementary for 
SSIj values) using the following formula:
            Ijk       Bjk= −              (1)
            Ik

 We calculated SSI  as the coefficient of 
variation of those occurrence frequencies 
(standard deviation/average) for each species 
(Julliard et al. 2006, Leroy et al. 2014). 
 Indicator species analysis (IndVal) was 
conducted to define the indicator species of 
the cluster groups (Dufrêne & Legendre 1997, 
Bakker 2008).

      IndValjk=Ajk×Bjk×100              (2)

 For the IndVal, Ajk (specificity) is calculated 
as follows: 
            Ijk       Ajk= —              (3)
             Ij

 In Equations 1-3, Bjk is the occurrence 
frequency of species j in cluster group k, Ijk is 
the number of plots in cluster group k occupied 
by species j, Ik is the number of plots in each 
cluster group k, and Ij is the total number of 
plots occupied by species j.
 Non-metric multidimensional scaling 
(NMDS) was employed to investigate indirect 
gradients influencing species distribution. 
NMDS was performed on the vegetation data 
using the Sørensen distance measure, with 
three starting dimensions and an instability 
criterion of 10⁻⁵ (McCune & Mefford 1999). 
The dimensions were determined after 500 
iterations of the data.  The ordination's stress 
value was utilized to evaluate the reliability of 
the NMDS, where a stress value under 20% 
(or 0.2) signifies good data conformity (Clarke 
1993). Continuous environmental variables 
that do not show high correlations with each 
other, along with all categorical environmental 
variables, were related to the ordination axes 
of the NMDS. The continuous environmental 
variables used in the NMDS are the same as 
those described for Random Forest regression 
(RFR) in Section 2.2.4. Explanations regarding 
the selection of continuous variables for the 
RFR are also provided in that section.
 Lastly, we defined the species richness 
(Si), rare species richness (RSi) and abundant 
(common) species richness (ASi) for each plot. 
Here RSi refers to an incidence rate of 1% or 
less while ASi corresponds to an incidence 
rate of 5% or higher. Cluster analysis, MRPP, 
IndVal and NMDS were conducted using PC-
ORD 4.0 for Windows (McCune & Mefford 
1999).

Rarity and beta diversity metrics 

We calculated local rarity of the ith plot, 
denoted as IRRi using the metrics proposed 
by Dapporto and Dennis (2008), Leroy et al. 
(2012). The formula for IRRi is given by:
               (∑wj⁄S) -wmin       IRRi= —————              (4)
                wmax-w-wmin
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 In the equation S represents the species 
richness in the ith plot. The weight of the jth 
species, denoted as wj, is given by 1-(Ij⁄Imax), 
where Ij is the occurrence of species j and Imax 
is the maximum occurrence (i.e., occurrence of 
the most widespread species). The minimum 
weight, wmin, is assigned to the species with 
the maximum occurrence in the PS dataset, 
while the highest weight, wmax, is assigned 
to the species with lowest occurrence of the 
PS dataset. The calculations for IRRi were 
conducted using the Rarity version 1.3-6 
package (Leroy 2013). For each plot i, relative 
contribution to total rarity, denoted as RIRRi 
was computed as follows:
                  IRRi       RIRRi= ——                            (5)
                  ∑IRRi

where the sum of RIRRi values for all plots 
(∑iRIRRi ) is to equal 1.
 Species and local contributions to β-diversity 
(SCBD and LCBD, respectively) were 
calculated using the approach of Legendre and 
De Cáceres (2013). PS dataset was initially 
transformed as follows: 

       y'ij=√(yij /yi+                  (6)

where yi+=∑j
p

=1yij=Si and yij represents the 
dataset containing occurrence values of p 
species (column vectors y1, y2,…, yp of Y) 
observed in n plots (row vectors x1, x2,…, xn of 
Y). We then calculated SCBD values for each 
species (SCBDj) and LCBD values for each 
plot (LCBDi) using the following formulates.

       SCBDj=SSj⁄SSTotal                (7)

       LCBDi=SSi ⁄SSTotal                 (8)

where SSj=∑i
n

=1sij and SSi=∑j
p
=1sij . sij and 

SSTotal were computed as follows:

       sij=(y'ij−y̅j)
2               (9)

       SSTotal=∑i
n
=1∑j

p
=1sij                          (10)

 sij creates the matrix composed of squared 
differences from column average. SSTotal, the 

sum of the squared deviations from the column 
means of whole-transformed matrix, forms 
the basis of BDTotal which is the index of beta 
diversity. 

       BDTotal=SSTotal  ⁄ (n−1)                          (11)

 It is important to note that 
∑jSCBDj=∑iLCBDi=1. The calculations of 
SCBDj and LCBDi were executed using the 
‘adespatial’ package within the R software 
program (Dray et al. 2012, Dray et al. 2017).
 All the computed metrics including Ij, SSIj, 
Si, RSi, ASi, RIRRi, SCBDj and LCBDi derived 
from PS dataset were compiled and stored in 
an excel file for use subsequent utilization in 
later stages of the analysis.

Environmental predictors

Elevation (ELEV) and bedrock geology 
(ROCK) maps were provided by OGM 
(General Directory of Forestry) and MTA 
(General Directorate of Mineral Research and 
Exploration). While the elevation map has a 
resolution of 30x30 m, the bedrock geology 
map used in the study was derived from a pre-
existing geology map of the Mediterranean 
region with a resolution of 100x100 m. 
Therefore, all the maps were resampled at a 
resolution of 100 m by 100 m grids by using 
nearest neighbor interpolation as simplest 
technique for assigning pixel values to the 
new grid. Slope (SLOP) and aspect (ASPT) 
were derived from the elevation-built function 
provided by ArcGIS. The topographic position 
index (TPI) and landform category (LFC) 
maps were derived from elevation map by 
“Topographical Tools” into the ArcGIS 
extensions (Jennes 2006). Additionally, the 
heat index (HI) was calculated for each grid 
using the following equations:

       HI=cos(aspect−202.50)×
       tan(slope inclination angle)             (12)

 In the HI equation, 202.50 represents the 
SSW aspect and is assumed to be the highest 
heat load on slopes facing southwest (Zelený 
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& Chytrý 2007). 
 The resampled bedrock map was composed 
of 7 main classes: limestone (LIME), sandstone 
(SAND), pebblestone (PEBB), ophiolitic 
(OPHI), dolomite (DOLO), alluvium (ALLU) 
and a combined group containing basalts, 
chert, shale, travertine, and vulcanite (COMB). 
Landform types were composed of 8 classes: 
canyons, deeply incised streams (CANY), 
midslope drainage and shallow valleys 
(MDSV), upland drainages, headwaters 
(UDHE), U-shaped valleys (USVA), upper 
slopes, mesas, plain small, open slopes 
(USME), local ridges/hills in valley (LRHV), 
midslope ridges, small hills in plains (MRSH) 
and, mountain tops or high ridges (MTHR).

Data analysis

We employed Pearson correlation to examine 
the relationships between SCBDj and both 
Ij and SSIj as well as to investigate the 
associations of LCBDi with Si, RSi and ASi. 
Additionally, we explored the connections 
between the community response data (LCBDi 
and RIRRi) and discrete environmental 
variables through Spearman correlation, 
while also examining their relationships with 
continuous environmental variables using 
Pearson correlation. 
 We employed Random Forest regression 
(RFR) to analyze the patterns of LCBDi and 
RIRRi. We opted for RFR as our modeling 
tool due to its popularity as a machine learning 
algorithm for both classification and regression 
problems. Introduced by Breiman (2001), RFR 
is based on model aggregation concepts. It 
has been frequently used for modeling species 
distribution with binary and continuous data. 
Before conducting the RFR analysis, to mitigate 
multicollinearity, we conducted a Pearson 
correlation between continuous environmental 
variables and excluded highly correlated 
variables (r>0.60) (Pozzobom et al. 2020). In 
cases of correlation between two variables, 
we retained the variable that contributed 
most to the RF models of LCBDi and RIRRi. 

The performances of the RFR models were 
evaluated using root mean square error (RMSE) 
and mean absolute error (MAE), two common 
metrics to measure accuracy for continuous 
variables. Enhanced model performance is 
indicated by lower RMSE or MAE (Aertsen et 
al. 2010, Karunasingha 2022). The variables' 
predictive power from the RFR model is 
visually represented, showing the ranking of 
each variable's importance in the prediction 
process. Variables with greater importance are 
major contributors to the outcome, significantly 
affecting the resulting values (Islam et al. 
2023). For correlation analysis, we utilized 
the Paleontological Statistics (PAST) software 
version 1.89 (Hammer et al. 2001). The 
modeling and prediction of LCBDi and RIRRi 
were accomplished using the caret package 
within the R environment (Kuhn 2023).

Results

A total of 103 species were identified across 800 
sampling plots (Table S1). Through clustering, 
the sample plots were categorized into four 
distinct groups (labeled as I, II, III, and IV), 
yielding a highly informative arrangement 
with substantial separation between these 
groups (MRPP T = -324.660) and a significant 
internal coherence within each group (MRPP 
A = 0.258) The number of sampling plots in 
Group I to Group IV were 347, 217, 127, and 
109, respectively (for the cluster dendrogram, 
see Fig. S1 in the Supplementary). A total of 59 
species demonstrated significant associations 
(p<0.01) with the cluster groups based on 
the findings of the indicator species analysis. 
The count of indicator plant species (p<0.01) 
in Group I to Group IV were 9, 7, 6, and 37, 
respectively (see Table S2 in the Supplementary 
for the outcomes of Indicator Species Analysis, 
IndValjk). Group I is characterized by Pinus 
nigra subsp. pallasiana, Juniperus oxycedrus 
subsp. oxycedrus, Teucrium polium subsp. 
polium, Cotoneaster nummularius, and Cedrus 
libani. Group II is distinguished by prominent 
indicator species such as Quercus cerris, 
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Styrax officinalis, Crataegus orientalis var. 
orientalis, Cistus salviifolius, and Quercus 
ithaburensis subsp. macrolepis. Group III 
comprises indicator species like Acantholimon 
confertiflorum, Origanum onites, Astragalus 
angustifolius subsp. angustifolius, Berberis 
crataegina, and Juniperus excelsa subsp. 
excelsa. Group IV includes Quercus coccifera, 
Pistacia terebinthus subsp. palaestina, Pinus 
brutia var. brutia, Phillyrea latifolia, and 
Daphne sericea. 
 A stable NMDS ordination was achieved 
with a final stress of 17.19% for the three-
dimensional solution. The NMDS axes 
together account for 80.7% of the variance. 
Axis 1 captures 42.4% of this variance, 
while Axis 2 accounts for 21.5%, and Axis 3 
covers 16.8%. ELEV exhibits the strongest 
correlation with Axis 1 (r=-0.828). This is 
followed by MTHR (r=-0.258) and CANY 
(r=0.242). The environmental predictors with 
the highest correlation with Axis 2 are SAND 
(r=0.521) and LIME (r=-0.493) (see Table S3 
in the Supplementary for the correlation results 
of the environmental predictors). 
 The groups defined by the cluster analysis 
and the MRPP test are meaningfully distributed 
along the first two axes of the ordination 
diagram. This is because, in general, sample 
plots from the same group are positioned 
closer to each other than to sample plots 
from different groups. Sample plots of Group 
IV are predominantly clustered in the lower 
right quadrant of the ordination diagram. 
A significant portion of the sample plots of 
Group II is located in the middle and upper 
regions of the diagram. All sample plots of 
Group III are located in a narrow section in 
the lower left corner of the ordination diagram. 
Across the ordination diagram, the only group 
that occupies the largest area, shows the 
most heterogeneous distribution, and comes 
into contact with all other groups is Group I. 
However, a large portion of the sample plots 
belonging to this group is also positioned in the 
lower left quadrant where the sample plots of 

Group III are located (Fig. 2). 
 Twelve species exhibit the highest correlation 
(r>0.4) with the first axis of the NMDS 
ordination (Table S3), all of which are identified 
as indicator species for Group II, Group III, 
and Group IV. These include Styrax officinalis 
(r=0.529) and Cistus salviifolius (r=0.401) as 
indicator species for Group II; Acantholimon 
confertiflorum (r=-0.608), Astragalus 
angustifolius subsp. angustifolius (r=-0.665), 
Berberis crataegina (r=-0.723), and Juniperus 
excelsa subsp. excelsa (r=-0.423) for Group 
III; and Quercus coccifera (r=0.659), Pistacia 
terebinthus subsp. palaestina (r=0.602), Pinus 
brutia var. brutia (r=0.725), Phillyrea latifolia 
(r=0.505), Daphne sericea (r=0.423), and 
Fontanesia phillyraeoides (r=0.428) for Group 
IV (Table S3). None of the Group I indicator 
species exhibit a significant correlation with 
Axis 1. A possible reason for this may be the 
more heterogeneous distribution of sample 
plots belonging to this group along the NMDS 
ordination axes compared to the sample plots 
of the other groups. Only one indicator species 
from Group I, Pinus nigra subsp. pallasiana, 
is correlated with the second axis (r=0.468). 
Additional species significantly correlated 

Figure 2 NMDS ordination of 800 sampling plots in the 
Kuyucak mountain district, Mediterranean Region, 
Türkiye. Sampling plots are labelled according to four 
groups produced by cluster analysis and MRPP test.
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with the second axis include Quercus cerris 
(r=0.640) as well as Juniperus excelsa subsp. 
excelsa (r=-0.619), which is also correlated 
with the first axis and serves as an indicator 
for Group III, and Styrax officinalis (r=0.461), 
which is also correlated with the first axis and 
serves as an indicator for Group II. 
 The negative correlation of Axis I with 
elevation (ELEV) and canyons (CANY), 
alongside the positive correlation with 
mountain tops or high ridges (MTHR), 
indicates that the indicator species of Groups II 
and IV (Styrax officinalis, Cistus salviifolius, 
Quercus coccifera, Pistacia terebinthus subsp. 
palaestina, Pinus brutia var. brutia, Phillyrea 
latifolia, Daphne sericea, and Fontanesia 
phillyraeoides) are more commonly found in 
lower elevations within the Kuyucak mountain 
district, particularly in canyons or deeply 
incised streams characterized by concave 
topography. In contrast, the indicator species 
of Group III (Acantholimon confertiflorum, 
Astragalus angustifolius subsp. angustifolius, 
Berberis crataegina, and Juniperus excelsa 
subsp. excelsa) are more prevalent in higher 
elevations and areas with steep ridges 
characterized by convex topography. The 
positive correlation of SAND and the negative 
correlation of LIME with Axis II indicate 
that the parent material also plays a role in 

the distribution of species in the Kuyucak 
mountain district. Species that show a strong 
positive correlation with Axis II, such as 
Quercus cerris, Pinus nigra subsp. pallasiana, 
and Styrax officinalis, are generally common in 
areas with sandstone bedrock, while Juniperus 
excelsa subsp. excelsa is more prevalent in 
areas with limestone bedrock.
 The value of SSTotal (eqn10) was 540.755, 
and the corresponding value of BDTotal (eqn 
11) was 0.677. The range of SCBDj spanned 
from 8.030×10-5 to 5.953×10-2 (Table S1), with 
a mean SCBDj of 9.708×10-3.Twenty-five of 
the 103 species contributed to beta diversity 
above the average value (refer to Fig. 2), 
comprising 83.3% of the total beta diversity. 
Among these species, the top three species 
(Berberis crataegina, Astragalus angustifolius 
subsp. angustifolius and Juniperus exelsa 
subsp. excelsa) contributing the most to beta 
diversity are found in approximately half of 
the sample plots. Juniperus oxycedrus subsp. 
oxycedrus has the highest occurrence value and 
ranks fifth in terms of its contribution to beta 
diversity. The species contributing the least 
to beta diversity among these 25 species are 
Origanum minutiflorum, Phlomis grandiflora 
var. grandiflora, Colutea cilicica and Cedrus 
libani, with their occurrence values ranging 
from 50 to 91 (Fig. 3, Table S1).

Figure 3 SCBDj values of the species exceeding the average SCBDj value.
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 Notably, SCBDj exhibited statistically 
significant positive associations with Ij, while 
showing negative associations with SSIj. 
Berberis crataegina and Astragalus angustifolius 
subsp. angustifolius, with values of 399 and 
382 respectively, contribute the most to the 
positive relationship between SCBDj and Ij. 
These species have the highest SCBDj values, 
which are 0.0595 and 0.0580. On the other hand, 
Juniperus oxycedrus L. subsp. oxycedrus, with 
the highest Ij value of 542, weakens the positive 
relationship between SCBDj and Ij, as its SCBDj 
value is 0.0473 (Table S1). This situation implies 
that very frequently occurring species or species 
with an occurrence value greater than 50% do 
not contribute to SCBDj. The main role in the 
negative relationship between SCBDj and SSIj 
is played by species that are found in a single 
cluster and have a rare distribution. Specifically, 
there are 44 species in a single cluster, and their 
SSIj values are 200. Among these 44 species, the 
Ij values of 34 species are below 10. Additionally, 
the average SSIj value of all species is 160.11, 
and among the species that contribute above 
the average to beta diversity (Fig. 3), only 
the  values of Cedrus libani and Acantholimon 
confertiflorum exceed the average SSIj value.
 The LCBDi values ranged from 2.027×10-3 

 and 6.883×10-4, while the range for RIRRi 
values extended from 2.085×10-3 and 4.005×10-4 
(Table S3). Regarding the relationships,  LCBDi 
exhibited a strong positive correlation with 
RSi, a weak positive correlation with Si, and a 
strong negative correlation with ASi (Table 1). 
A significant positive relationship was observed 
between LCBDi and RIRRi (r=0.748) (Fig. 4), 
indicating a parallel trend in the relationships of 
LCBDi and RIRRi with environmental predictors.

 When compared to RIRRi, LCBDi showed 
statistically significant associations with a 
greater number of environmental predictors. The 
environmental variables that exhibited significant 
relationships with LCBDi and RIRRi are ELEV, 
SLOPE, TPI, LIME, PEBB, and DOLO. 
Additionally, LCBDi demonstrated significantly 
negative relationships with ASPT, HI, USME, 
and LRHV, along with significantly positive 
relationships with SAND and COMB. On the 
other hand, only CANY and MTHR emerged as 
environmental variables that showed significant 
relationships with RIRRi but not with LCBDi 
(Table 2).

Table 1 Pearson correlation results of SCBDj and LCBDi 
with species and community metrics. Asterisks 
show the level of significance for each variable 
(*0.05, **0.01, ***0.001).

Species metrics (n=103) SCBDj                     
Ij 0.956***
SSIj -0.707***
Community metrics (n=800) LCBDi RIRRi 
Si 0.078* 0.649***
RSi 0.286*** 0.431***
ASi -0.238*** 0.388***

Figure 4 Scatterplot depicting the relationship between 
LCBDi versus RIRRi.

Table 2 Pearson and Spearman correlation results 
of  LCBDi and RIRRi with environmental 
variables (n=800). Asterisks show the level of 
significance for each variable (*0.05, **0.01, 
***0.001).

Environmental data   
Continuous data
ELEV -0.291*** -0.469***
ASPT -0.110** -0.032
SLOP 0.140*** 0.137***
HI -0.109** -0.041
TPI -0.099* -0.236***
Categorical data
ROCK(LIME) 0.114** 0.109**
ROCK(PEBB) -0.207*** -0.072*
ROCK(OPHI) 0.037 0.066
ROCK(ALLU) -0.019 0.057
ROCK(DOLO) -0.101** -0.233***
ROCK(SAND) 0.075* 0.046
ROCK(COMB) 0.075* 0.009
LFC(CANY) 0.067 0.149***
LFC(MDSV) 0.050 0.048
LFC(UDHE) 0.029 -0.060
LFC(USVA) -0.011 -0.050
LFC(USME) -0.080* -0.066
LFC(LRHV) -0.121*** -0.056
LFC(MRSH) -0.010 -0.046
LFC(MTHR) -0.020 -0.088*
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 The results of Pearson correlation tests 
conducted between each pair of continuous 
environmental predictors are presented in  
Table 3. 

 The subsequent variables, namely ASPC and 
TPI were excluded from the RFR analyses. 
In other words, RFR models for LCBDi and 
RIRRi were developed using ELEV, SLOPE, 
HI as continuous environmental predictors, 
along with ROCK and LFC as categorical 
environmental predictors. 
 For LCBDi and RIRRi, RFR with 500 trees was 
run using 10-fold cross validation. Both RFR 
models exhibited high predictive performances 
(RMSE= 1.830×10-4 and MAE=1.428×10-

4 for LCBDi and RMSE=1.950×10-4 and 
MAE=1.470×10-4 for RIRRi). The performance 
of the RFR regression model for LCBDi was 
slightly superior to that of the RFR regression 
model for RIRRi, as indicated by the RMSE and 
MAE results. ELEV was the most significant 
predictor of LCBDi (importance=90.952), 
followed by SLOP (36.414), HI (35.854) and 
ROCK(PEBB) (35.125) (Fig. 4a1). The local 
maximum of LCBDi occurred at approximately 
ELEV=400 m, SLOP=35 and HI=0.75. 
The partial dependence plots indicated that  
increases as ELEV and HI decrease while 
SLOP increases. Lower LCBDi values were 
observed in areas dominated by ROCK(PEBB) 
(Fig. 5b1-e1).
 For RIRRi, the most contributed predictors 
were ELEV (importance=104.095), HI 
(37.521), ROCK(LIME) (33.580) and SLOP 
(32.176), respectively (Fig. 5a2). The local 
maximum of RIRRi for ELEV (~400 m), 
and SLOP (~30) were very close to those of 
LCBDi. For HI, the local maximum was ~0.88. 
Like LCBDi, the increase of RIRRi occurred 

with decreasing ELEV and increasing SLOP. 
However, the relationship between RIRRi and 
HI were non-linear. Higher RIRRi values were 
in areas dominated by ROCK(LIME).
 As a result, Random Forest Regression 
models of LCBDi and RIRRi were applied to a 
total of 98,450 pixels at a resolution of 100x100 
m covering the Kuyucak mountain district, 
resulting in the predictive distribution maps 
shown in Fig. 6a and 6b. LCBDi and , RIRRi 
were subsequently referred to as LCBDpv and 
RIRRpv, based on the pixel values that make up 
their distribution maps. There are significant 
similarities as well as notable differences 
between the maps of LCBDpv and RIRRpv. The 
most significant similarities are observed in 
pixels where the LCBDpv and RIRRpv values 
are high. The areas with the highest LCBDpv 
and RIRRpv values are generally steep valley 
slopes, characterized by complex terrain and 
karstic limestone, located at elevations below 
1100 m. The most significant differences 
between the LCBDpv and RIRRpv maps are 
observed in areas of the district that are above 
1100 m in elevation. Generally, between 
elevations of 1100 and 1300 m, RIRRpv values 
are higher than LCBDpv values, while in areas 
above 1300 m, LCBDpv values are higher than 
RIRRpv values (Fig. 6a and 6b).
 In forest ecosystems, developing 
conservation plans that account for economic 
costs is essential for the success of conservation 
practices. This need for economically viable 
strategies highlights the differences between 
the conservation cost approach and the ecology-
centered approach, which vary significantly in 
their focus when defining priority conservation 
areas. Conservation cost approach prioritizes 
areas based on the economic feasibility of 
conservation efforts. It aims to maximize 
biodiversity outcomes while minimizing 
financial expenditures, emphasizing cost-
effectiveness and resource allocation. 
 Ecology-centered approach focuses on 
the intrinsic ecological value of areas, 
prioritizing habitats and ecosystems based 
on their biodiversity, habitat quality, and 

Table 3 Pearson correlation results of the continuous 
environmental variables (n=800). Bold fonts 
show correlation coefficients greater than 0.6.

ELEV ASPT SLOP HI
ASPT -0.079
SLOP 0.085 -0.044
HI 0.047 0.608 0.088
TPI 0.835 -0.092 0.080 0.019
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ecological functions, irrespective of economic 
considerations. While an ecology-centered 
approach is advantageous for ensuring 
ecosystem sustainability, relying exclusively 
on this approach can lead to significant 
financial implications. To address this 

challenge in the Kuyucak mountain district, 
two distinct conservation value maps have 
been created based on four conservation 
priority classes (Priority Class 1 > 0.0016, 
Priority Class 2 (0.0013-0.0016), Priority 
Class 3 (0.0010-0.0013), and Priority Class 

Figure 5 Relative importance of predictors of LCBDi (a1) and RIRRi (a2). Partial dependence plots for RFR of LCBDi 
(b1-f1) and RIRRi (b2-f2).
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4 < 0.0010), taking into account the RMSE 
values of the provided RF regression models 
for LCBDi and RIRRi. One map employs a 
conservation cost approach, represented by 
min(LCBDpv,RIRRpv), while the other utilizes 
an ecology-centered approach, represented by 
max(LCBDpv,RIRRpv) (see Figures 6c and 6d). 
In this context, min(LCBDpv,RIRRpv) signifies 
the lowest value among the Local Contribution 
to Beta Diversity (LCBD) and Relative 
Importance of Rare Species (RIRR) for the 
same pixel, whereas max(LCBDpv,RIRRpv) 
denotes the highest value. In other words, 
the smallest value among the LCBD and 
RIRR values for a given pixel is expressed 
as min(LCBDpv,RIRRpv), while the largest 
value is expressed as max(LCBDpv,RIRRpv). 
Consequently, the maps are referred to as 
the minConVal map (indicating conservation 
value based on minimum pixel values) and 
the maxConVal map (indicating conservation 
value based on maximum pixel values). 
 In Figures 6c and 6d, the areas exhibiting the 
highest conservation value are represented in 
the color red. When determining the area to be 
conserved in the Kuyucak mountain district, 
decision-makers can use either of these two 
maps or a composite map derived from them 
while considering conservation costs. This 
dual mapping approach provides the necessary 

information for decision-makers to achieve 
a balance between ecological integrity and 
economic feasibility.

Discussion

We used data from perennial plant species to 
derive our response variables (i.e., SCBDj, 
LCBDi, and RIRRi). This approach was chosen 
because, as Irl et al. (2017) noted, data from 
perennial species can be obtained more quickly, 
easily, and cost-effectively compared to annual 
species. Furthermore, the long lifespan of 
perennial species makes them valuable indicators 
for assessing the impact of environmental factors 
on biodiversity. In contrast, annual species are 
less reliable indicators due to their short lifespans 
and susceptibility to transient climatic events 
(Duarte et al. 2024).
 SCBD quantifies the relative contribution of a 
species to total beta diversity and provides insight 
into identifying species with significant variations 
across the study district or region (Legendre & De 
Cáceres 2013). Our findings reveal that SCBDj 
is positively correlated with species incidence, 
meaning that species significantly influencing 
beta diversity are more frequently encountered. 
This observation aligns with previous research 
(Heino & Grönroos 2017, Vilmi et al. 2017, 
de Paiva et al. 2021). Species exhibiting the 
highest SCBDj values (e.g., Berberis crataegina, 
Astragalus angustifolius subsp. angustifolius, 
Juniperus excelsa subsp. excelsa, Pinus nigra 
subsp. pallasiana, Juniperus oxycedrus subsp. 
oxycedrus, Styrax officinalis, Quercus cerris, 
Teucrium polium subsp. polium, and Quercus 
coccifera) also demonstrated intermediate 
occurrence (ranging from 246 to 542 plots), 
consistent with observations by Heino and 
Grönroos (2017), Szabó et al. (2019).
 The results obtained from NMDS indicate 
that the vegetation groups are significantly 
separated from one another. With the exception 
of Quercus cerris, all species exhibiting the 
strongest correlations with the first and second 
NMDS axes also serve as indicator species for 
the vegetation groups identified through cluster 

Figure 6 Predictive distribution maps of LCBDpv (a) and 
RIRRpv (b), along with the minConVal map (c) 
and the maxConVal maps (d).
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analysis. The most influential environmental 
factor in differentiating species or vegetation 
groups is elevation. These results for the Kuyucak 
mountain district are consistent with studies 
conducted by Kavgacı et al. (2021), Özkan 
(2014), and Fountain et al. (2007) on vegetation-
environment relationships in the Mediterranean 
region.
 Most indicator species from vegetation 
groups contribute significantly to beta diversity. 
For instance, Berberis crataegina, Astragalus 
angustifolius subsp. angustifolius, and Origanum 
onites—characteristic species of the Group III 
along with Juniperus oxycedrus subsp. oxycedrus, 
an accompanying species of the Group I, are 
among the most influential contributors to beta 
diversity. These species are also present in the 
other communities, leading to generally lower 
SSIj values. Therefore, it is not surprising that 
SCBDj exhibits a negative correlation with SSIj.
 Local Contribution to Beta Diversity (LCBD) 
measures the ecological uniqueness of species 
assemblages or sites (Heino & Grönroos 2017, 
Yao et al. 2021). Our study demonstrates a weak 
correlation between LCBDi and Si (r = 0.078), 
suggesting that the association between unique 
species compositions and higher species richness 
is not substantial. This finding contrasts with the 
results reported by Kong et al. (2017), Landeiro 
et al. (2018), Pearman et al. (2020) and Camara 
et al. (2022), who identified significant positive 
relationships between LCBDi and Si. Additionally, 
it diverges from the negative associations observed 
in studies by Legendre and De Cáceres (2013), Da 
Silva and Hernández (2014), Heino et al. (2017), 
Heino and Grönroos (2017), Pajunen et al. (2017), 
Ngor et al. (2018), Heino and Alahuhta (2019), 
Tan et al. (2019), Brito et al. (2020), Borges et 
al. (2020), Dubois et al. (2020), Dansereau et al. 
(2021), Santos et al. (2021) and Hill et al. (2022). 
The weak relationship between LCBDi and Si 
may be attributed to the use of presence-absence 
data rather than species abundance data in the 
calculation of LCBDi, the fact that the species 
contributing most to LCBDi have different habitat 
preferences, or the environments in which these 

species occur exhibit a wide variation in species 
richness.
 We observed a positive association between 
LCBDi and the number of rare species (RSi), 
while it displayed a negative association with 
the number of abundant species (ASi).  These 
findings align with Qiao et al. (2015), who 
conducted a study in the Badagongshan National 
Nature Reserve, Hunan Province, Central China. 
Another relevant metric for identifying priority 
conservation areas is the Index of Relative Rarity 
(IRRi) (Dapporto & Dennis 2008, Leroy et al. 
2012). In our study, we employed the Relative 
Contribution to Total Rarity, denoted as RIRRi. 
RIRRi exhibited a stronger correlation with RSi 
compared to ASi. RIRRi and LCBDi display 
contrasting relationships with abundant species 
richness (ASi), as ASi is positively correlated 
with RIRRi but negatively correlated with 
LCBDi. Overall, these relationships underscore 
the significant role of rare species in LCBDi 
and RIRRi, with rare species contributing more 
significantly to LCBDi than to RIRRi.
 Numerous studies across different biological 
communities have indicated correlations between 
local contribution to beta diversity and various 
environmental factors, including latitude, 
elevation, environmental heterogeneity, water 
chemistry, soil characteristics, and geology in 
aquatic ecosystems (Kong et al. 2017, Vilmi 
et al. 2017, Szabó et al. 2019, Leão et al. 2020, 
Camara et al. 2022, Gavioli et al. 2022, Xia 
et al. 2022), and elevation, slope, convexity, 
aspect, precipitation seasonality, soil pH, and 
soil organic matter in terrestrial ecosystems 
(Tan et al. 2019, Santos et al. 2021, Yao et 
al. 2021). Similarly, our results demonstrated 
positive associations between LCBDi and several 
environmental variables (SLOP, ROCK(LIME), 
ROCK(SAND), and ROCK(COMB)), as 
well as negative associations with others 
(ELEV, ASPT, RI, HI, TPI, ROCK(PEBB), 
ROCK(ALLU), ROCK(DOLO), LFC(USME), 
and LFC(LRHV)). RIRRi, conceptually similar 
to LCBDi, also exhibited connections with 
environmental factors but employed a distinct 
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approach and simpler formulation to rank priority 
conservation sites based on species occurrence 
values (Dapporto & Dennis 2008, Leroy et al. 
2012). Although there were differences in LCBDi 
and RIRRi values for the same plots, we did not 
observe explicit contrasts in their primary driving 
variables (ELEV, SLOPE, TPI, ROCK(LIME), 
ROCK(PEBB), and ROCK(DOLO)). As a 
result, the distribution maps produced by the 
Random Forest Regression (RFR) model for 
the elevated values of both metrics proved to be 
very similar. In the Kuyucak mountain district, 
areas with elevated LCBDi and RIRRi values 
are primarily found in steep valley slopes below 
1100 m, characterized by complex terrain and 
karstic limestone, predominantly within the 
termo- and meso-Mediterranean vegetation belt. 
Preserving such areas is crucial as they contribute 
significantly to ecological uniqueness.

Conclusions

The expenses associated with conservation vary 
in accordance with the size of the areas intended 
for protection. When compared to smaller-scale 
forest areas, the costs of protection, along with 
the time and labor needed for such efforts, tend 
to be notably higher in larger-scale forest areas. 
To enhance ecological assessment, restoration 
initiatives, and conservation planning in the 
Kuyucak mountain district, we have expanded 
our analysis beyond the distribution maps derived 
from LCBDpv and RIRRpv. 
 Specifically, we generated distribution maps 
considering the conservation cost approach (Fig. 
6c) and the ecology-centered approach (Fig. 6d). 
The conservation cost approach emphasizes 
economic efficiency and cost-effectiveness in 
prioritizing conservation areas, while the ecology-
centered approach focuses on ecological integrity 
and biodiversity preservation. These approaches 
can complement each other, providing a more 
comprehensive framework for conservation 
planning. 
 This pioneering study represents the first 
endeavor in geospatial modeling and mapping of 
conservation value distribution for Mediterranean 
forest ecosystems in Türkiye. Its findings have 
the potential to serve as a foundational reference 
for future studies pursuing similar objectives in 

distinct districts or regions.
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