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Abstract Terrestrial laser scanning (TLS) has emerged as a powerful tool for 
acquiring detailed three-dimensional information about tree species. This 
study focuses on the development of models for tree volume estimation using 
TLS data for even aged Fagus sylvatica L. stands located in the western part 
of the Southern Carpathians, Romania. Both parametric and non-parametric 
modeling approaches were explored, leveraging variables extracted from TLS 
point clouds such as diameter at breast height (DBH), height, crown radius, 
and other relevant crown and height parameters. Reference data were collected 
through high-precision field measurements across 76 circular Permanent Sample 
Areas (PSA) spanning 500 m2 each. A multi-scan approach was implemented 
for TLS data collection, involving four scanning stations within each PSA. 
Concurrently, parametric (regression equations) and non-parametric (Random 
Forest - RF) models were applied, leveraging all TLS-derived variables to 
explore potential enhancements in volume estimation accuracy. Among the 
parametric models, the most effective performer was the one featuring solely 
DBH as an input variable. The RF non-parametric model yielded more accurate 
stem volume estimates (RMSE=1.52 m3*0.1ha-1; RRMSE=3.62%; MAE=1.22 
m3*0.1ha-1) compared to the best-performing regression model (RMSE=5.24 
m3*0.1ha-1; RRMSE=12.48%; MAE=4.28 m3*0.1ha-1). Both types of models 
identified DBH as the most important predictive variable, while the RF model 
also included height and crown related parameters among the variables of 
importance. Results demonstrate the effectiveness of the non-parametric 
RF model in providing accurate and robust estimates of tree stem volume 
within even aged European beech stands. The integration of these models in 
operational forestry can enhance precision in biomass estimation and forest 
resource management. Future studies should aim to validate these models across 
diverse forest ecosystems to further refine and enhance their applicability.
Keywords: Terrestrial Laser Scanning (TLS), tree volume assessment, Random 
Forest algorithm, parametric models.
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Introduction

Various remote sensing technologies and field 
survey instruments are currently being used for 
forest assessment at a fine scale so as the term 
precision forestry has emerged which can be 
defined as a method to accurately determine 
characteristics of forests and treatments 
at stand, sub-stand or individual tree level 
(Holopainen et al. 2014, Hosingholizade et al. 
2023). The remote sensing technologies used 
in precision forestry generally refers to: high 
and very high multispectral satellite imagery, 
airborne and terrestrial laser scanning and 
unmanned aerial vehicles (UAVs) (Fardusi et 
al. 2017). Very high (< 1 m) and high (< 10 m) 
spatial resolution optical satellite imagery 
supports forest inventories tasks such as 
identifying dominant species, determination of 
stand height, volume and biomass estimation 
or basal area and crown closure (White et al. 
2016). New digital aerial photogrammetry 
systems, used either with manned or unmanned 
aerial vehicles, have enabled the production 
of image-based point clouds (similar to the 
LiDAR points). The UAVs usage in collecting 
forest inventory attributes exploded in recent 
years, however, the UAVs derived point cloud 
are limited to characterizing the outer canopy 
envelope since the canopy penetration rate is 
limited (White et al. 2016) or it can be used 
in conjunction with airborne laser scanning 
(ALS) data which will delivers accurate digital 
terrain models for the surveyed area.   
 The use of high-resolution three-dimensional 
(3D) point clouds derived from ALS as well 
as terrestrial laser scanning (TLS) is an area 
of intense research for characterizing forest 
ecosystems (Shang et al. 2019, Calders et al. 
2020, Dobre et al. 2021). Despite advancements 
in remote sensing, gaps remain in integrating 
TLS data for comprehensive forest inventory 
(Disney et al. 2019, Niță et al. 2021, Wardius 
et al. 2024). This study addresses these gaps 
by comparing parametric and non-parametric 
models, thus contributing to more accurate 
forest biomass estimation and management 

practices.
 ALS is an active remote sensing technology 
that measures the three-dimensional 
distribution of forest vegetation, suitable for 
describing the vertical structure of the forest 
(Smreček et al. 2018), capable of covering 
large areas in short periods of time and at 
relatively reduced costs (Shang et al. 2019, 
Zhou et al. 2023a). Although ALS systems 
are efficient in covering extensive areas, they 
encounter difficulties in accurately detecting 
ground-level forest vegetation. Even though 
it has a greater canopy penetration rate than 
the UAVs point cloud, the ALS point cloud 
cannot be used to directly measure the tree 
DBH. In this context, TLS stands out as a 
technology capable of obtaining detailed three-
dimensional point clouds representation of the 
canopy as well as of the overstory (i.e. shrubs 
and low trees) and the near-ground vegetation 
(White et al. 2016), thus providing detailed 
information about forest structure (Pascual et 
al. 2019, Wang et al. 2021), particularly in the 
canopy gap zone (Zhou et al. 2023b).
 The potential of TLS for forest monitoring 
was first highlighted in the early 2000s. Initially, 
applications were focused on measuring trees 
and their components, such as diameter at 
breast height (DBH) (Wezyk et al. 2007) and 
height (García et al. 2011), eventually evolving 
towards estimating tree volume (Pitkänen et al. 
2021, Abegg et al. 2023), aiming to improve 
above-ground biomass (AGB) determination 
(Liang et al. 2016, Demol et al. 2021, Demol 
et al. 2022). Thus, TLS-derived data are used 
to obtain information about dendrometric 
characteristics of trees and stands (Zhong et 
al. 2017, Cabo et al. 2018), as well as detailed 
data on stand structure (Lim et al. 2003, Burt 
et al. 2013, Åkerblom & Kaitaniemi 2021), 
thereby contributing to efficient forest resource 
management (Moskal & Zheng 2012, Rehush 
et al. 2018, Oruç & Öztürk 2021, Wilson et al. 
2021).
 TLS can be used as a complementary system 
to ALS, considering its ability to observe 
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the canopy structure from below the canopy 
upwards from a radial perspective, while ALS 
observes the canopy from the top-down, almost 
exclusively at close to nadir view (White et al. 
2016).
 In previous research, TLS has been used to 
estimate dendrometric characteristics of trees, 
focusing particularly on estimating DBH, 
tree height, crown dimensions, as well as tree 
positioning (Maas et al. 2008, Olofsson et al. 
2014, Srinivasan et al. 2015, Bienert et al. 2018, 
Bogdanovich et al. 2021). This information 
has been utilized in both trunk segmentation 
(Li et al. 2020), volume estimation (Saarinen 
et al. 2017), and determination of the three-
dimensional crown structure (Zhu et al. 2020, 
Han & Sánchez-Azofeifa 2022).
 Thus, the use of TLS has shown great 
potential for estimating the volume of trees 
and stands, with two approaches to accomplish 
this. In the first approach, volume is determined 
using TLS data obtained through geometric 
reconstruction of trees (Abegg et al. 2023). 
Another approach for tree volume estimation 
involves applying regression equations based 
on dendrometric characteristics of single 
trees extracted from point cloud segmentation 
(Mayamanikandan et al. 2019, Pitkänen et al. 
2021).
 In this context, the selection and optimization 
of models, as well as considering a larger 
number of factorial variables (such as crown 
dimensions, knot-free height, stand structure, 
age, site conditions, etc.) in the process of 
estimating tree and stand volume, represent 
important steps in the foundation of these 
models. For instance, the study conducted by 
Popescu et al. 2003 highlighted the importance 
of crown diameter, determined from point 
clouds, in estimating tree volume, while 
(Iizuka et al. 2020) found that the best result 
in estimating the stem volume from remote 
sensing data was obtained using canopy 
height, canopy size and canopy cover as input 
variables. 
 Within this framework, traditional models 

for estimating tree volume are generally 
linear, non-linear, or mixed-effects models. 
These models often require meeting statistical 
assumptions such as data independence, 
normal distribution, and equal variance to 
be properly applied. However, an alternative 
approach to tree volume estimation involves 
using models based on the Random Forest 
(RF) algorithm. Indeed, these models enable 
a more efficient estimation of nonlinear 
relationships without imposing a specific data 
structure, in contrast to parametric models 
that assume certain distributions or functional 
relationships between variables. This provides 
increased flexibility in adapting the models to 
observed data, RF models being capable of 
capturing complex and non-linear relationships 
between input variables and their outcomes, in 
particular, it can deal with clustered data, as 
well as missing data (Auret & Aldrich 2012). 
Additionally, RF models are not limited by 
issues associated with covariance and unequal 
data variability, making them an attractive 
option in tree volume estimation.
 Previous studies have demonstrated that RF 
models have a higher potential for estimating 
tree volume compared to traditional models, 
primarily being applied for estimating stand 
volume and biomass on a large scale (Silva et 
al. 2017, Esteban et al. 2019).
 The selection and optimization of models 
for estimating tree volume are crucial aspects 
in improving these estimations. Models based 
on the RF algorithm have demonstrated better 
potential in estimating tree volume compared 
to traditional ones, providing flexibility in 
adapting to observed data and avoiding issues 
associated with unequal data variability (Wang 
et al. 2023).
 The RF algorithm is known for its ability to 
efficiently handle data with unequal variability, 
as well as for its capability to provide robust 
estimates. This is because RF is a combination 
of multiple individual decision trees, and the 
final result is obtained as an average of their 
predictions.
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 Moreover, RF allows for the exploration and 
integration of a large number of features and 
variables. This facilitates obtaining precise 
and robust volume estimates, considering the 
diversity and complexity of the data involved 
in the estimation process.
 Within this context, the aim of this study is 
to investigate the potential of employing TLS 
data for developing volume models tailored 
to individual trees. The main objective was 
to conduct a comparative analysis between 
individual tree volumes calculated from field 
data and those estimated from TLS point cloud 
processing, using specific parametric and non-
parametric models.

Materials and methods

The study site is situated in Romania, within 
the western region of the Southern Carpathians, 
specifically within the northwestern section of 
the Retezat-Godeanu mountain range, notably 
within the Țarcu Mountains in the Muntele 
Mic district. It spans the upper basin of the 
Sebeș River, encompassing the main valleys of 
Cuntu and Valea Craiului, with peak elevations 
surpassing 2100 m (Figure 1).
 In the year 2020, according to a specific 
methodology (Badea 2013), a total of 38 
Permanent Plots (PP) were inventoried in a 
systematic network, sized according to the 

dominant tree species (i.e. Fagus sylvatica 
L.) and stands age. Each PP comprises two 
circular Permanent Sample Areas (PSA), 
each with a radius of 12.62 m, covering 
an area of 500 m2. Thus, in total there were 
inventoried trees within 76 PSAs. These PSAs 
are positioned at a distance of 30 m from the 
center of the PP (Figure 2). On flat terrain, the 
PSAs are oriented towards each other in the 
east-west direction, while on inclined terrain, 
they are aligned along the contour line. The 
sizing of the network, including determining 
the number of plots and the distance between 
them, was carried out using information 
regarding the coefficients of variation of 
volume calculated based on data from U.P. VI 
- Cuntu management plan of B.E. Caransebeș, 
2016 edition (Cojoacă 2016).

 The coordinates of the centers of the PPs and 
PSAs were recorded using a Trimble GeoXH 
device equipped with a Zephir II antenna 
and were marked using metal stakes (20 cm) 
completely buried in the ground, as well as 

wooden markers (stakes) with 
the upper end approximately 
30 cm above the ground, 
highlighted with white paint. 
Within the PSA, all trees with 
a DBH equal, or greater than 6 
cm were inventoried, and their 
descriptive information was 
recorded using the FieldMap 
equipment (Petrila et al. 
2012). The characteristics 
determined, measured, or 
estimated during the inventory 
included: tree position, DBH, 
species, tree height (h), pruned 
height, crown projection, Kraft Figure 1 Research area location map (base map – digital elevation model 

from Shuttle Radar Topography Mission (SRTM)).

Figure 2 The positioning of the permanent sample area 
(PSA) in relation to the center of the permanent 
plots (PP).
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class, and descriptive information such as tree 
vitality. The DBHs were measured using a 
forest caliper, while heights were measured 
using the Vertex IV instrument.
 To compute the reference aboveground 
volume of each tree, we utilized a specific 
equation (Giurgiu et al. 2004) (Eq. 1), 
commonly applied for forest tree species in 
Romania:

where d represents the tree’s diameter at breast 
height, in cm; h – tree height, in m; v – volume 
of the tree, in m3; a0 - a4 – regression coefficients, 
established by species (Giurgiu et al. 2004).  
 Within the PSAs specific measurements 
were conducted using a static terrestrial laser 
scanner, namely the FARO 3D X130 HDR 
model (Figure 3). This high-precision device 
has a distance estimation error of ±2 mm at 25 
m and a laser wavelength of 1550 nm (FARO 
Technologies Inc 2019).
 To ensure data accuracy and a high level of 
detail, a multiple scan approach of each PSA 
was conducted. Additionally, to ensure precise 
co-registration of the point clouds resulting 

from the terrestrial scanning, seven spherical 
markers were uniformly placed in each PSA.
 The main advantage of using multiple scans 
from different directions compared to a single 
scan placed at the center of the PSA lies in 
identifying a higher number of trees. This 
aspect has a direct impact on the precision of 
estimating dendrometric parameters of trees 
(Apostol et al. 2018) because it allows covering 
a larger area and obtaining a more complete 
representation of the forest environment. 
Consequently, multiple scans provide a more 
detailed 3D representation of the trees in the 
PSA, including their crowns and branches, 
facilitating a more precise estimation of DBH. 
Thus, within each PSA, TLS measurements 
were conducted by establishing four stations. 
The first station was placed at the center of the 
PSA, the second towards the north direction, 
the third at 120⁰ from the north direction, and 
the last one at 240⁰. The TLS stations, except 
for the one placed at the center of the PSA, 
were positioned at a distance of 15 meters 
from the center of the PSA (Figure 4). While 
the systematic network of PSAs ensures 
broad coverage, potential biases due to site 

accessibility and forest structure 
variability must be considered. 
Additionally, the precision 
of TLS equipment and the 
complexity of data processing 
may limit the generalizability of 
findings.
 To achieve automatic co-
registration of the TLS point 
clouds it was necessary to place 
spherical targets uniformly 
within the PSA. Subsequently, 
the obtained data were input 
into the TLS dedicated software 
(FARO Technologies Inc, 2019) 
for primary processing and to 
generate a single point cloud 
corresponding to each PSA, and 
exported in.LAS file format, 
which allows further processing. 

log v = a0 + a1 log d + a2 log2 d + a3 log h + a4 log2 h     (Eq. 1)

Figure 3  The terrestrial laser scanning device positioned at the center 
of a permanent sample area (PSA): (1) PSA center; (2) TLS 
position; (3) Spherical reference point; (a) photo captured in the 
field; (b) TLS point cloud co-registered using Scene software.
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The dimensional characteristics of the crown, 
such as the maximum crown radius (Cr), 
crown length (CL), as well as its volume, were 
derived from the point cloud using the TreeLS 
(de Conto et al. 2017, R Core Team 2021) and 
VoxR packages implemented in R software 
(Lecigne et al. 2018; R Core Team 2021). The 
DBH was extracted using the IRLS algorithm 
(Liang et al. 2012) implemented in the TreeLS 
package (de Conto et al. 2017), as well as 
through the use of the FORTLS package 
(Molina-Valero et al. 2022), developed to 
automate the processing of TLS point cloud 
data and to estimate forest variables. Tree 
heights were determined through semantic 
segmentation of the point cloud, identifying 
the tree crown top, which corresponds to 
the maximum height recorded within the 
point cloud at that position (de Conto et al. 
2017, Molina-Valero et al. 2022). However, 
due to the significant errors associated with 
determining tree height using TLS, often 
resulting in underestimation (Apostol et al. 
2018, Pascu et al. 2020, Wardius & Hein 
2024), the heights derived from TLS were 
not utilized in the development of tree stem 
volume models, except for the pruned height 
(Hrv). Instead, height metrics (i.e. Hp50, Hiq, 
Hstd, Hp01) were calculated at the level of 
PSA from the heights of segmented semantic 

tree cylinders. 
   In developing models to estimate 
tree stem volume using TLS data, 
the selection of appropriate variables 
is crucial for achieving precise and 
dependable results. In this context, 
the utilization of parametric and non-
parametric models represents two 
distinct approaches, each offering 
unique advantages and applications.
  In this study, we examined both 
parametric models, which rely on 
predefined functional relationships 
between independent variables and 
outcomes, and the RF non-parametric 
model that has the capability to 

capture complex and nonlinear relationships 
between variables. The variable selection 
for each model considered the significance 
and relevance of these factors in estimating 
tree stem volume. The chosen variables were 
selected for their significant impact on tree 
stem volume estimation and their potential to 
enhance the model’s accuracy (Giurgiu 1979).
 After the semantic segmentation of TLS 
point clouds, the following data were computed 
as independent variables: DBH, pruned height 
(Hrv), height at which 50% of the total trees 
are found (Hp50), height at which 1% of the 
total trees are found (Hp01), crown volume 
(Vc), crown length (CL), ratio of crown length 
to pruned height (CLr), standard deviation of 
height (Hstd), maximum crown radius (Cr), 
interquartile height range (Hiq) and maximum 
crown radius (Cr). These variables were used 
in the development of four parametric models:
 -Model 1: includes DBH as the only 
independent variable.
 -Model 2: includes as independent variables: 
DBH, pruned height (Hrv), height at which 
50% of the total trees are found (Hp50) and 
interquartile height range (Hiq).
 -Model 3: includes as independent variables: 
DBH and crown length (CL), and the ratio of 
crown length to pruned height (CLr).
 -Model 4: includes as independent variables: 

Figure 4  Data acquisition with terrestrial laser scanning within the 
permanent sample area (PSA)
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DBH, crown volume (Vc), maximum crown 
radius (Cr), height at which 50% of the total 
trees are found (Hp50), height at which 1% of 
the total trees are found (Hp01) and standard 
deviation of height (Hstd).
 Within the non-parametric modeling 
approach for tree volume estimation, we 
investigated the utilization of RF model.
 In the application of the RF algorithm, we 
explored the diverse effects of the number of 
decision trees and the selection of variables 
considered at each split. We examined a broad 
range, spanning from 50 to 250 decision 
trees, to evaluate how this aspect influences 
model performance. Additionally, we tested 
different numbers of variables for each split, 
ranging from 2 to 6, to discern how this factor 
contributes to model improvement.
 The RF algorithm allows determining the 
relative importance of each independent 
variable and generates a partial dependence 
plot for the dependent variable (Schonlau & 
Zou 2020), which is essential for improving 
RF results.
 To substantiate the methodology of 
estimating tree volume, the dataset containing 
the identified trees from point cloud processing 
(TLS) was randomly partitioned. Seventy-
five percent of the total identified trees were 
allocated for training the 
parametric models and 
RF algorithm, while the 
remaining 25% were 
reserved for validation 
(testing).
 The evaluation of the 
prediction abilities of both 
parametric models and the 
RF algorithm was carried 
out using the coefficient 
of determination (R2) 
(Eq. 2), root mean square 
error (RMSE) (Eq. 3), 
relative root mean square 
error (RRMSE) (Eq. 4), 
and mean absolute error 

(MAE) (Eq. 5). These metrics were utilized 
to compare the predicted stem volume of each 
parametric and non-parametric approach with 
the field reference tree stem volume calculated 
using specific methods (Giurgiu et al. 2004). 
The same metrics were then determined at 
the plot (PP) level for the best performing 
parametric model and the RF non-parametric 
model. Plot level stem volumes were obtained 
by summing the individual stem volumes 
calculated through the parametric and non-
parametric methods, respectively.

where n is the number of observations, yi is 
the observed value, ŷi is the predicted value, 
and ȳ is the arithmetic mean of observed 
values.
 The entire workflow adopted to estimate 
tree stem volume is organized into three 
distinct stages (Figure 5).

Figure 5  The workflow of the study methodology.
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Results

Following the inventories conducted in 2020, 
38 permanent plots (PPs) corresponding to 76 
sampling areas (PSAs) were established, where a 
total of 2924 trees were identified and measured, 
representing the ground truth data (Figure 
6). Furthermore, in 2021, all plots underwent 
comprehensive surveying and scanning using 
terrestrial laser scanning, resulting in a total 
of 304 scans. Subsequent to processing the 
point clouds, statistical reports were generated 
for each permanent sampling plot, providing 
insights into the accuracy of co-registration. As 
a result, the collation of these reports revealed an 
average co-registration error of 7.1 mm (Table 1). 
Among all permanent sampling plots, roughly 
90% exhibit an average co-registration error of 
less than 10 mm. Moreover, 97% of the plots 
meet the acceptable tolerances for determining 

dendrometric parameters (<20 mm), with the 
exceptions being PSAs 732 and 741.
 The result of semantic processing of point 
clouds obtained from terrestrial laser scanning 
is represented in the form of three-dimensional 
point clouds (Figure 7), with high density, 
having attributes such as spatial coordinates 
(X, Y, Z) of each point, as well as information 
regarding their classification into four classes: 
points classified as ground (Figure 8a), points 
classified as forest vegetation (tree crowns) 
(Figure 8b), points classified as tree trunks and 
thick branches (Figure 8c), and points classified 
as dead wood on the ground (Figure 8d).
 Following the point cloud segmentation, 
variables such as tree DBH (d), height of 
segmented semantic tree cylinder (h), pruned 
height (Hrv), maximum crown radius (Cr), 
crown volume (Vc), and crown length 
(CL) variables were extracted (Figure 9).     

Additionally, height metrics, such 
as height at which 50% of the total 
trees are found (Hp50), interquartile 
height range (Hiq), standard 
deviation of height (Hstd) and height 
at which 1% of the total trees are 
found (Hp01) were calculated from 
the heights of segmented semantic 
tree cylinders. Furthermore, the ratio 
between crown length (CL) and 
pruned height (Hrv) was calculated 
using the aforementioned data. These 
details allowed for a comprehensive 

Figure 6  Distribution of mean diameter and mean height determined at PP level.

Figure 7 The classified 3D point cloud resulted for a PSA.
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characterization of individual trees and their 
crowns, providing a deeper understanding of 
their structure and dimensions.
 Following the processing of TLS point 
clouds a total of 2596 trees were identified from 
38 permanent plots (PP) based on the position 
of the trees. Thus, according to the confusion 
matrix (Table 2), a total of 1881 trees were 
accurately matched with the reference dataset. 
This yields an accuracy of 55.6% (the ratio of 
correctly correlated trees to the total number 
of trees) and a precision of 72.4% (the ratio of 

Table 1 Co-registration accuracy determined for permanent sample area (PSA).
Permanent 

Sample 
Area

(PSA ID 
number)

Maximum 
Point Error

(mm)

Mean Point 
Error
(mm)

Minimum 
Overlap

(%)

Code of Permanent
Sample Area

(PSA ID number)

Maximum 
Point 
Error
(mm)

Mean 
Point 
Error
(mm)

Minimum 
Overlap

(%)

491 6.9 6.9 54.2 681 7.0 5.9 27.6
492 7.3 6.2 34.1 682 5.0 4.8 23.6
501 14 12.7 35.9 691 5.8 5.1 46.8
502 5.3 4.1 35.4 692 6.2 5.8 38.4
511 5.9 4.7 34.8 701 7.4 5.4 30.3
512 6.5 5.2 43.0 702 9.6 7.3 22.4
521 4.7 3.7 31.4 711 11.3 9.2 30.5
522 6.1 5.1 32.0 712 11.6 8.6 22.5
531 7.7 5.7 33.8 721 7.7 6.6 29.3
532 7.5 6.5 29.4 722 8.2 6.7 38.6
541 5.9 4.7 33.2 731 9.8 7.5 34.0
542 5.5 4.5 39.7 732 32.2 20.5 24.5
551 6.5 5.0 28.9 741 30.4 22.7 23.2
552 6.4 4.8 38.0 742 6.9 6.1 43.7
561 6.7 5.3 41.7 751 13.3 8.6 26.9
562 8.4 6.7 24.3 752 6.7 5.9 39.0
571 5.7 4.8 36.7 761 11.1 9.2 33.1
572 6.6 5.1 32.5 762 8.2 7.6 31.3
581 5.9 5.1 44.9 771 10.2 8.3 31.9
582 8.1 6.3 35.1 772 7.9 6.0 36.2
591 9.4 9.4 33.1 781 7.1 6.2 38.2
592 26.3 16 25.9 782 8.9 7.6 37.3
601 5.7 4.7 36.8 791 9.4 7.3 25.6
602 4.9 3.8 28.0 792 9.4 7.7 40.5
611 10.2 6.9 28.1 801 6.6 6.2 33.9
612 6.1 4.8 32.8 802 15.4 10.9 7.2
621 9.9 6.4 32.9 811 6.8 6.3 28.9
622 7.2 5.8 28.1 812 6.2 5.3 38
631 9.6 7.3 35.6 821 6.9 6.2 41.2
632 8.6 5.7 34.1 822 6.7 5.5 32.5
641 12.8 9.7 34.3 831 13.7 9.9 31
642 12.2 10.5 30.5 832 10.0 7.9 33
651 11.1 8.9 37.7 841 6.1 5.5 38.8
652 11.3 9.3 33.8 842 5.8 5.1 36.6
661 8.6 7.9 27.8 851 5.9 4.5 35.8
662 25 15 24.4 852 6.2 4.5 44.5
671 7.8 7.3 43.1 861 4.3 3.6 38.6
672 7.5 7.5 27.8 862 6.6 4.7 41.1

Mean of Maximum Point Error (mm) Mean of Mean Point Error (mm) Mean of Minimum 
Overlap (%)

9.1 7.1 33.6

Table 2 Confusion matrix for the TLS identified trees 
and field reference trees.

 TLS identified trees

Reference trees 
TN FP
328 715
FN TP

1043 1881
Note: TP - corresponding trees, identified both through field 

inventories and TLS point cloud processing; TN - trees 
existing in the field but not identified through TLS point 
cloud processing; FP - trees identified through TLS point 
cloud processing but not corresponding to field data; FN - 
trees existing in the field for which correspondence could 
be established with trees identified through TLS point 
cloud processing
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Figure 8 Semantic segmented point cloud: (a) 
points classified as ground; (b) points 
classified as forest vegetation; (c) 
points classified as tree trunks and thick 
branches; (d) points classified as dead 
wood on the ground.

Figure 9 The structure of the data extracted from semantic 
segmentation of TLS point clouds. d – DBH; h – height 
of segmented semantic tree cylinder; Cr – maximum 
crown radius; CL – crown length; Hrv – pruned height.

a)

b)

c)

d)

correctly correlated trees to the total number of trees 
identified from the processing of point clouds). 
However, 328 trees existing in the field were not 
identified in the TLS data. Moreover, a total of 
715 trees were exclusively identified in the dataset 
resulting from terrestrial laser scanning and did 
not have a counterpart in the reference dataset. 
Additionally, from the field data, a total of 1043 
trees could not be identified; however, 19% of these 
are trees that are forked at the base (54 trees), dead 
(89 trees), and that are either bent or have a broken 
trunk (56 trees).
 The analysis of the four parametric models, 
developed based on the selection of TLS-based 
extracted variables, indicates that Model 1 emerges 
as the optimal parametric model for estimating 
tree stem volume (Table 3). This determination is 
corroborated by the values of R2=0.92, RMSE=0.26 
m3, MAE=0.16 m3, and RRMSE=30%.
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 When estimating tree stem volume using 
the RF algorithm, the relative importance 
of variables extracted from the semantic 
segmentation of TLS point clouds was 
assessed. It was observed that the DBH 
emerged as the most influential variable, with a 
relative importance (IncMSE%) (Figure 10) of 
approximately 60% in decreasing the root mean 
square error. This underscores the substantial 
impact that DBH has on the model’s accuracy. 
 Also, through testing various configurations 
of variables and numbers of decision trees used 
by the RF algorithm, it was determined that 
employing 250 decision trees and considering 
6 variables at each split led to a noteworthy 

reduction in estimation error and a substantial 
improvement in model performance. Hence, 
the results illustrated that augmenting the 
number of variables considered at each split 
and increasing the number of decision trees 
positively influenced the performance of the 
RF algorithm. For instance, when the RF 
algorithm was tested with only 2 variables, 
the mean squared error (MSE) was 0.084. 
However, for the model with 6 variables, this 
error was reduced to below 0.018 (Figure 11).
 Comparing the tree stem volume estimated by 
the best-performing parametric model (Model 
1) with that estimated by the non-parametric 
model using the RF algorithm reveals 

Figure 10 Relative importance of the independent variables 
in the RF model.

Table 3 Tree volume assessment based on parametric models.

Variables Models
Train data Test data Total number of trees

R2 RMSE
(m3)

MAE
(m3)

RRMSE 
(%) R2 RMSE 

(m3)
MAE
(m3)

RRMSE 
(%) R2 RMSE 

(m3)
MAE
(m3)

RRMSE 
(%)

DBH (d) M1 v 0.90 0.27 0.17 30 0.88 0.21 0.14 29 0.92 0.26 0.16 30

DBH (d) 
and height 
variables

M2 v 0.70 0.45 0.42 35 0.65 0.48 0.31 39 0.77 0.42 0.28 44

DBH (d) 
and crown 
variables

M3 v 0.85 0.38 0.38 42 0.71 0.46 0.28 40 0.83 0.36 0.24 42

DBH (d), 
height 
and crown 
variables

M4 v 0.85 0.52 0.20 37 0.75 0.42 0.18 34 0.86 0.38 0.25 36

Note: v - tree stem volume, m3; d - DBH, cm; Hrv - pruned height, m; Hp50 - height at which 50% of total trees are located, m; Hp01 - 
height at which 1% of total trees are located, m; Hstd - standard deviation of height, m; CL - crown length, m; CLr - ratio of crown 
length to pruned height; Cr - maximum crown radius, m; Hiq - interquartile height range, m; Vc - crown volume, m3.  M1: v=0,2653 
– 0,0292*d + 0,0017*d2; M2: v=0,0720*d – 0,0044*Hrv – 0,0422*Hp5 - 0,0404*Hiq; M3: v=0,0779*d + 0,0101*CL – 0,0152*CLr 
– 1,3174; M4: v=–0,0421*d – 0,0198*Hp50 + 0,1494*Hp01 + 0,0649*Hstd + 0,1634*Cr – 0,0001*Vc + 0,1376.

Figure 11 Mean square error according to various 
configurations of variables and numbers of 
decision trees used by the RF algorithm.
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that the inclusion 
of supplementary 
variables and the 
adoption of a non-
parametric approach 
enhance the accuracy 
of volume estimation. 
This is evidenced by 
an increase R2 by 
approximately 6%, 
indicating better 
explainability of the 
variation in the data; 
a decrease RMSE 
by approximately 
37%, and RRMSE by 52% reflecting 
higher precision in volume estimation; 
and a reduction in MAE by approximately 
50% (Table 4). The RF model’s superior 
performance, indicated by a 52% reduction 
in RRMSE compared to the best parametric 
model, underscores its potential for 
improving operational forestry practices. 
These results highlight the importance of 
including crown parameters alongside DBH 
in volume estimation models.
 Comparing the tree stem volume estimated 
by the best-performing parametric model 
(Model 1) with the field reference tree 
stem volume, we achieved an RMSE 

value of 0.26 m³. This value equates to 
approximately 30% of the average volume 
of the corresponding trees (RRMSE=30%) 
(Figure 12a).
  When comparing the total tree volume 
calculated at the PP level using field 
measurement data to the volume determined 
by the best-performing parametric model 
(Model 1), a strong and significant 
correlation between the two sets of values 
(r=0.932**) was observed. However, 
despite this strong correlation, the analysis 
yielded an RMSE value of 5.24 m³*0.1ha-1, 
accompanied by an RRMSE of 12.5% and a 
MAE of 4.28 m3*0.1ha-1 (Figure 13a).

Figure 12 Tree volume of reference compared to the estimated tree volume resulting from the semantic segmentation of 
point clouds for (a) parametric model M1, (b) RF non-parametric model.

Table 4  Evaluation of the prediction abilities of the tree stem volume estimation based 
on parametric model 1 and non-parametric RF model.

Model Data R2 RMSE 
(m3)

MAE
 (m3)

RRMSE 
(%)

Parametric model 
(M1)
(v ~ d)

Train data 0.90 0.27 0.17 30
Test data 0.88 0.22 0.14 29

Total number of 
trees 0.92 0.26 0.16 30

Non-parametric model 
RF (v ~ d, Hrv, Hp50, Hp01, 
Hstd, CL,CLr, Cr, Hiq, Vc )

Train data 0.98 0.12 0.06 17
Test data 0.90 0.20 0.13 19

Total number of 
trees 0.97 0.15 0.08 14

Note: v - tree stem volume, m3; d - DBH, cm; Hrv - pruned height, m; Hp50 - height at which 50% 
of total trees are located, m; Hp01 - height at which 1% of total trees are located, m; Hstd - 
standard deviation of height, m; CL - crown length, m; CLr - ratio of crown length to pruned 
height; Cr - maximum crown radius, m; Hiq - interquartile height range, m; Vc - crown 
volume, m3.

a) b)
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Discussion

The use of TLS data for estimating forest 
variables such as DBH, tree height, and tree 
volume is a subject of significant interest to 
both the forestry community and forestry 
practice. When estimating tree volume based 
on TLS data, various approaches have been 
explored (Momo Takoudjou et al. 2018, 
Mayamanikandan et al. 2019, Brede et al. 
2022, Singh et al. 2022). These include using 
allometric equations using tree DBH and 
height extracted from the TLS point cloud. 
Another approach involves using quantitative 
structure modeling technique (QSM), where 
volume is directly estimated from the TLS 
point cloud. In a study conducted by Momo 
Takoudjou et al. in 2018, they emphasized 
that tree volumes in semi-deciduous forests 
of eastern Cameroon, extracted from TLS 
data using the QSM technique, exhibit high 
precision (R² above 0.98 and RRMSE below 
2.81%). In our study, we achieved comparable 
accuracy in tree volume estimation (R²=0.98 
and RRMSE=3.62%) using the non-parametric 
RF-based model. Another study (Brede et al. 
2022), conducted across various test sites, 
including a beech forest in the Netherlands, 
highlights a lower coefficient of determination 
for tree volume estimation achieved through 
the QSM technique (R² =0.86) compared to the 
one obtained in our study (R² =0.98).
 Traditional linear regression models, 

and more recently, machine learning-
based methods applied to TLS data, have 
demonstrated their utility in modeling complex 
nonlinear allometric relationships between 
tree’s variables (Aguilar et al. 2021, Wagers 
et al. 2021, Yrttimaa et al. 2022, Stovall et al. 
2023).
 Our findings underscore the efficacy of both 
parametric and non-parametric models in 
estimation tree stem volume using TLS data. 
Among the parametric approaches, Model 1, 
utilizing tree DBH as the sole independent 
variable extracted from TLS data, demonstrated 
the highest precision, with an RMSE of 5.24 
m3*0.1ha-1 and an RRMSE of 12.48% at PP 
level. Conversely, the parametric Model 2, 
which integrates 3 supplementary parameters 
among one extracted as individual tree variable 
(i.e. Hrv) and two calculated at plot level (i.e. 
Hp50, Hiq) yielded the weakest performance. 
Notably, the RF non-parametric model, which 
integrates DBH with height (i.e. Hrv, Hp50, 
Hp01, Hiq, Hstd) and crown related variables 
(i.e. CL, CLr, Cr, Vc), outperformed the best 
performing parametric model in volume 
estimates both at tree level (RMSE=0.15 
m3, RRMSE=14%, MAE=0.08m3) and 
at PP level (RMSE=1.52 m3*0.1ha-1, 
RRMSE=3.62%, MAE=1.22m3*0.1ha-1) 
compared to the best performing regression 
model (M1) (RMSE=0.26 m3, RRMSE=30%, 
MAE=0.16m3 at tree level; RMSE=5.24 

Figure 13 The total volume of trees at PP level calculated based on the processing of TLS point clouds in relation 
to the volume of trees determined based on field measurements for (a) parametric model M1, (b) RF 
non-parametric model.

a) b)
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m3*0.1ha-1, RRMSE=12.48%, MAE= 4.28 
m3*0.1ha-1 at PP level), highlighting the 
effectiveness of RF non-parametric algorithm 
in the estimation of timber volume.
 A limitation of our study arose from the 
inability to accurately extract tree heights from 
the TLS point cloud. Despite implementing a 
multiscan approach, the tops of the dominant 
trees were not consistently captured, leading to 
the underestimation of heights. Additionally, in 
the case of understory trees, their tops were often 
obscured by the crowns of nearby dominant 
trees, further complicating height estimation. 
These difficulties are particularly pronounced 
with European beech trees, characterized by 
their ovoid crowns within stands and high 
frequency of windings (Sofletea & Curtu 
2007). Consequently, determining tree heights 
as local maxima from tree positions became 
unreliable when tree crowns interlocked. 
To address this, we opted to derive heights 
at the PSA level from the height of the tree 
bole (cylinder) calculated from TLS data. As 
such, we determined Hp50, Hstd, and Hp01, 
which we deemed suitable as input variables 
for the volume models. By utilizing the tree 
cylinder, which closely approximates actual 
tree height, we hypothesized that these may 
effectively capture competitive relationships 
between trees. Future research should explore 
integrating TLS with UAV-derived canopy 
models to improve height estimation accuracy. 
Additionally, validating these models in 
different forest types will enhance their 
robustness and applicability.
 Other authors, like Yusup et al. (2023), 
tested 16 parametric (i.e. regression) models 
to estimate trunk volume (Vt) for Euphrates 
poplar trees using TLS data along the Tarim 
River, NW China. Sixteen regression models 
using the variables tree height, trunk height, 
under branch height, DBH, crown diameter, 
crown area, basal trunk diameter, were 
tested, one model performing best, accurately 
predicting Vt for irregularly shaped trees 
with 93.18% accuracy. All the trees were 

completely scanned with the TLS device 
and were generally distance to each other, 
thus the determination of their height from 
the point cloud point didn’t pose significant 
challenges. The study concluded that TLS can 
effectively measure irregular trunk shapes of 
Populus euphratica and developed accurate 
Vt prediction models, suggesting multivariate 
models as more effective in prediction.
 As previously mentioned, one of the main 
drawbacks in our study was the inability to 
directly measure the tree heights from the 
TLS data. This limitation may be alleviated by 
combining TLS data with other remote sensing 
technologies, complementary to each other. 
For instance, the tree heights may be obtained 
by combining a TLS derived terrain model 
with a canopy model extracted from UAV data, 
as performed by Iizuka et al. (2020). 

Conclusions

Considering the results obtained in the study 
regarding the application of parametric 
models to estimate tree stem volume, it was 
highlighted that DBH, when used as a single 
variable extracted from TLS data, accurately 
predicted the tree volumes. 
 A significant contribution of this study is the 
successful integration of variables extracted 
from TLS point cloud into a non-parametric 
model based on the RF algorithm. 
 This study demonstrates the efficacy of 
integrating TLS data with non-parametric 
models for accurate tree volume estimation. 
 The findings have significant implications 
for precision forestry, enabling better biomass 
estimation and forest management. 
 Further research should focus on extending 
these models to diverse forest ecosystems and 
integrating complementary remote sensing 
technologies.
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