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Abstract We used hyperspectral analysis to distinguish between acorns of Japanese 
red oak (Quercus acuta Thunb.) and ring-cup oak (Quercus glauca Thunb.), two 
closely related species of the evergreen oaks. To accomplish this, 631 Japanese red 
oak acorns and 505 ring-cupped oak acorns were collected from the seed orchard 
in Jeju Island, Korea, and hyperspectral imaging was performed. Two types of 
hyperspectral devices, Corning and Korea Spectral Products (KSP), were used to 
calibrate images and extract regions of interest. Average spectra were obtained from 
the extracted regions of interest, and morphological variables were added to the 
Corning data to form a dataset. Partial least square (PLS) was used as the learning 
model, Standard normal variate, Multiplicative scatter correction, and Savitzky-
Golay filtering were applied as preprocessing techniques, and competitive adaptive 
reweighted sampling and successive projection algorithm were applied as variable 
selection techniques; and the combination of preprocessing method, the number 
of PLS components, and the number of selected variables were optimized. The 
lightweight model was generated from the selected variables, and the performance 
was improved by combining the morphological variables. As a result, the lightweight 
model based on Corning dataset showed 45~85% accuracy, and the lightweight 
model based on the KSP dataset showed 75~90% accuracy. The model utilizing 
morphological variables in the Corning-based lightweight model showed a high 
accuracy of 98-100%, so we were able to discriminate the acorns of evergreen oaks 
between Q. acuta and Q. glauca. The results of this study are expected to serve as 
a basis for future model development for seed classification of hybrid oak acorns. 
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Introduction

Hybrids are common in Quercus spp. because 
species in the genus tend to hybridize well 
with each other (Rushton 1993). This trend 
is also observed in the evergreen oaks found 
in southern Korea. Hybridization occurs 

frequently in oak species such as Japanese 
red oak (Quercus acuta Thunb.) and ring-cup 
oaks (Quercus glauca Thunb.), despite the 
altitudinal differences in their reproductive 
zones (Lee et al. 2014). This hybridization 
can be used to induce hybridization among 
species in the genus to produce wood with 

*This  article was presented in the framework of the IUFRO Seed Orchards Conference, Brasov (Romania), 20-24 May 2024
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high survivability and high quality in harsh 
environments caused by climate change 
(Pelegrín 2017). 
 It is very important to know whether the result 
of hybridization is true hybrid seeds or seeds 
from pollen contamination (Nie et al. 2019, 
Michelon et al. 2023). Especially in forestry, 
it is important to know if the hybridization 
was performed correctly, as pollination and 
fertilization can be improperly controlled in 
open field orchards (Ribeiro-Oliveira & Ranal 
2014). There are several ways to determine 
breeding success after hybridization, including 
examining the plant phenotype, using genetic 
markers, or employing biotechnological 
methods. However, using plant phenotypes in 
practice is challenging due to the tendency for 
morphological overlap among species within 
the genus Quercus spp. (Valencia 2021). 
Methods using genetic markers (Matsumoto 
et al. 2009, Valencia 2021). Methods using 
genetic markers (Matsumoto et al. 2009) or 
molecular chemistry can be accurate, but they 
are costly, labor-intensive, and destructive to 
seeds (Shrestha & Hardeberg 2015, Boelt et al. 
2018).
 High-throughput phenotyping using 
hyperspectral analysis is a fast and non-
destructive method for seed quality 
classification and is also being used for varietal 
classification at the seed stage (Feng et al. 
2019). Varietal classification has been studied 
for seeds of various tree species, including 
hybrid seeds between European and Japanese 
larch (Farhadi et al. 2016), birch species 
(Tigabu et al. 2018), cultivated species in 
the genus Medicago (Jia et al. 2022), and the 
imaging classification of eucalyptus seeds 
(Michelon et al. 2024). 
 Prior to the hyperspectral classification 
of oak hybrids, there is a lack of research on 
the possibility of classifying hybrids between 
species within the genus using spectroscopic 
analysis at the seed level. Therefore, this 
study aims to first assess the classification of 
proximate evergreen oak species which are 

potential hybrid breeding materials within 
the Quercus genus in Korea, and to develop 
a foundational model for spectroscopic 
techniques to classify hybrid acorns in the 
future. 
 Q. acuta and Q. glauca are species of 
evergreen oaks distributed in the southern 
part of the Korean Peninsula. Initially, their 
distribution range was limited to Jeju Island 
and the coastal areas of the island (Lee & Choi 
2010). However, due to climate change, their 
distribution range is expected to expand into 
parts of the inland Korean Peninsula within the 
next 50 to 100 years (Yun et al. 2014, Kim et 
al. 2023). Additionally, Q. acuta is expected to 
have a high carbon uptake capacity, as its BEF 
does not decrease with increasing age (Kim 
& Lee 2017). Breeding for cold tolerance is 
thus required for future inland planting due to 
unstable winter temperatures and sudden cold 
waves caused by climate change (Kretschmer 
et al. 2018). 
 The aim of this study was to characterize 
the acorns of Q. acuta and Q. glauca using 
hyperspectral analysis. To this end, the 
following objectives were set: 1) to develop a 
model that can discriminate between acorns of 
different species within the evergreen oaks, 2) 
to identify the key variables influencing species 
discrimination, and 3) to develop a lightweight 
model using these main variables and explore 
ways to improve the performance of the model.

Materials and Methods

Materials

In October and December 2022, 631 acorns 
of Q. acuta and 505 acorns of Q. glauca were 
collected respectively from the seed orchards 
of the National Forest Seed Variety Center 
(NFSV) in Jeju Island, Korea. A total of 42 
families of Q. acuta and 33 families of Q. 
glauca provided acorns, with 10 to 15 seeds 
per family and 5 seeds per individual tree. The 
collected seeds were stored in a refrigerator at 
5°C for approximately 1-2 months and dried 
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in an indoor environment at 25°C and 50-
70% humidity for approximately 1-2 hours to 
control moisture and temperature conditions 
just prior to hyperspectral imaging.

Hyperspectral imaging

Measurements were conducted using two 
hyperspectral imaging instruments. The sensors 
used were Corning (400-1000 nm) and Korea 
Spectral Products (KSP, 400-1700 nm). For 
the Corning sensor, 150 spectral bands with 4 
nm intervals were measured in the visible and 
near-infrared regions. For KSP, 640 bands with 
2 nm intervals were measured in the visible and 
part of the short wavelength infrared (SWIR) 
region. During the measurements, a darkroom 
environment was created by installing a box 
coated with absorbent paint to prevent external 
light from entering. 
 Hyperspectral images were calibrated using 
white reference (WR) and dark reference (DR) 
images (Equation 1). To segment the region 
of interest where the acorns are located in the 
image, a thresholding strategy and a contouring 
strategy were used. For thresholding, the image 
data from the Corning sensor was converted 
to the difference between the two wavelength 
variables used in generalized difference 
vegetation index (GDVI) (Sripada et al., 2006). 
Pixels with R800-550 intensities above 0.9 were 
initially selected, and the unfiltered areas were 
removed using the fill hole technique. 
            IN-W
       RN= −−−−              (1)
            W-D

(RN: reflectance image calibrated for the Nth 
sample, IN: hyperspectral image taken for 
the Nth sample, W: white reference, D: dark 
reference).

      R800-550=R800-R550              (2)

(R800: spectral image at 800 nm, R550: spectral 
image at 550 nm)
 For contouring, we used a masking method 
based on Orth's thresholding for 932 nm 
grayscale images. The mean spectra, which 

averages the spectral values of the pixels in 
the seed region of interest, were extracted to 
form the Corning and KSP datasets along with 
the species data. For the region of interest on 
the Corning image, we extracted 24 additional 
morphological data from the red, green, and 
blue (480 nm, 540 nm, and 630 nm) images 
(Fig. S1). For the KSP dataset, we removed 
the region around 400-600 nm, where hot 
pixels and dead pixels occur due to inherent 
instrumental errors. Hyperspectral images 
were calibrated and extracted using python and 
the open source PlantCV (Gehan et al. 2017) 
packages.

Data analysis

For the extracted data of 1136 samples, we 
divided the training and validation sets in a 3:1 
ratio, with an equal number of Q. acuta and Q. 
glauca acorns in each set. The samples in the 
training set were analyzed using the following 
process.
 First, statistical preprocessing techniques 
were applied to remove potential errors, 
such as baseline and scatter effects, that may 
occur during hyperspectral imaging. We used 
Standard normal variate (SNV), Multiplicate 
scatter correction (MSC), and Savitzky-Golay 
filtering (SGF).
 Multivariate analyses were conducted using 
principal component analysis (PCA) and 
partial least square discriminant analysis (PLS-
DA). PLS has been widely used in fields like 
chemometrics where there are many variables 
and covariance problems, such as hyperspectral 
analysis. There are several model methods for 
PLS-DA, and in this study, we used PLS2 - 
Hard PLS-DA technique. The modeling was 
performed using the open-source PyChemAuth 
(Mahynski 2023) package.
 Finally, the number of variables required 
in the model was reduced to identify the 
most important spectral variables and reduce 
multicollinearity. For variable selection, we 
used the Successive projection algorithm 
(SPA) and Competitive adaptive reweighted 
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sampling (CARS). SPA is a technique used 
to remove multicollinearity among multiple 
variables (Zhang et al. 2008). CARS selects 
the k most important variables with the highest 
PLS coefficients (Li et al. 2009). The selected 
significant variables were used to build a 
lightweight model and test the classification 
performance. To enhance the performance of the 
lightweight model for the Corning dataset, an 
improved model was constructed by combining 
the important variables with morphological 
variables to create and use a new dataset. The 
combined variables were scaled to mitigate the 
effects of varying variable scales.
 For model validation, we used nested K-fold 
validation. To optimize the combination of PLS 
principal components and variable selection, 
which are the hyperparameters of the model in this 
study, a 5-fold cross validation was conducted to 
record the accuracy of each combination, and the 
combination with the highest average accuracy 
was selected. To evaluate the performance of 
the optimized model, accuracy was evaluated 
using 3-fold cross validation (Fig. 1). Finally, 
the model’s generalization performance was 
validated with the test set. 

Results

Mean spectra and PCA plot

Significant differences occurred between the 

spectral variables of the acorns of Q. acuta and Q. 
glauca (Fig. 2). For the Corning spectra, the main 
differences appeared between 700 and 900 nm. 
In the case of KSP spectra, significant differences 
emerged in the near-infrared region, starting 
from 700 nm to 1500 nm, and the differences 
between the mean values of the acornsdecreased 
after 1500 nm (Fig. 2).
 Dimensionality reduction using PCA 
showed that the clustering of the spectra of 
Q. acuta and Q. glauca tended to differ. For 
the Corning dataset, the difference between 
the clusters of the two species tended to occur 
in the PC2 direction. The PC2 loading on the 
Corning PCA plot was mainly influenced by 
spectral variables in the visible region (400-
700 nm) and near-infrared range (900-1000 nm). 
For the KSP dataset, the clustering also showed 
differences in the PC2 direction (Fig. 3).

Accuracy according to preprocessing and 
spectral range

Models based on the Corning dataset 
distinguished between the two species 
an accuracy ranging from approximately 
88~97.5%. When all spectral variables in the 
400-1000 nm range were preprocessed, with 
MSC preprocessing, a model achieved up to 
97.5% accuracy (Table 1). 

Figure 1 Workflow of spectrometry analysis used in this study.
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Figure 2 The whole and mean reflectance spectra of Quercus acuta and Quercus glauca acorns: 400~560, 623~675nm 
within the KSP dataset were excluded due to their high variances. Blue: Q. glauca; Red: Q. acuta; Corning dataset: a) 
whole spectra, c) mean spectra and KSP dataset: b) whole spectra, d) mean spectra.

Figure 3 Principal component analysis (2D score plots) for component 1 and 2. (a): Corning dataset, (b) KSP dataset.

Table 1 Species classification accuracy for spectral devices.

Device Corning dataset

Model Range 
(4nm) 400-1000 400-780 780-1000

Metrics Accuracy Acc(QA) Acc(QG) Accuracy Acc(QA) Acc(QG) Accuracy Acc(QA) Acc(QG)
PLS-
DA

Raw 0.94718 0.92405 0.97619 0.95070 0.93040 0.97622 0.91197 0.89241 0.93651
SNV 0.97183 0.95570 0.99206 0.96831 0.96835 0.96825 0.90490 0.93040 0.87302
MSC 0.97535 0.96203 0.99206 0.96479 0.95570 0.97619 0.91197 0.93671 0.88095
SG 0.93310 0.89873 0.97619 0.94014 0.90506 0.98413 0.88732 0.87975 0.89683

Device KSP dataset
Range 
(2nm) 400-1700 400-780 780-1700

Metrics Accuracy Acc(QA) Acc(QG) Accuracy Acc(QA) Acc(QG) Accuracy Acc(QA) Acc(QG)
PLS-
DA

Raw 0.95423 0.96203 0.94444 0.71831 0.72785 0.70635 0.94366 0.93671 0.95238
SNV 0.96479 0.97468 0.95238 0.65845 0.77848 0.50794 0.96831 0.96835 0.96825
MSC 0.95423 0.95570 0.95238 0.66197 0.79747 0.49206 0.94718 0.94937 0.94444
SG 0.96479 0.97468 0.95238 0.73239 0.71520 0.75397 0.96127 0.96203 0.96032

Note: PLS-DA: partial least squared discriminant analysis; Acc: accuracy; QA: Quercus acuta; QG: Quercus glauca; 
SNV: standard normal variate; MSC: multiplicative scatter correction; SGF: Savitzuky-Golay Filtering.
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Models based on the KSP dataset cshowed 
an accuracy ranging from approximately 
65~96.8%, and when the variables in the 780-
1700 nm range were processed with SNV 
preprocessing, a model achieved up to 96.8% 
accuracy in classifying the species (Table 1). 
 When the visible and near-infrared variables 
were analyzed separately, the Corning dataset 
had similar or increased accuracy in the 
visible but showed decreased accuracy in the 
near-infrared range. The KSP dataset had a 
significant decrease in accuracy in the visible 
region, with accuracy below 0.75, and similar 
or reduced accuracy in the near-infrared range, 
with results between 94% and 96%. For 
species-specific classification performance, 
the Corning dataset tended to discriminate Q. 
glauca better than Q. acuta, while the KSP 
dataset showed the opposite trend (Table 1).

Model performance by variable selection 
method

Variable selection using SPA showed poor 
discriminative performance compared to 
CARS. Reducing variables using SPA yielded 
low classification accuracy of approximately 
45-82%  on the Corning dataset and 79-93% 
on the KSP dataset (Table 2). On the other 
hand, CARS showed 94-96.8% classification 
accuracy on the Corning dataset and 89-96% 
classification accuracy on the KSP dataset. 
Among preprocessing techniques, SG achieved 
the highest discrimination accuracy, except 

when combined with CARS for the Corning 
dataset (Table 2).
 For the model with the highest accuracy, 
the Corning dataset showed the optimal 
discrimination with CARS and MSC 
preprocessing, achieving 96.83% accuracy 
(Fig. 4). For this model, variables between 550 
and 780 nm were selected. On the KSP dataset, 
the model with CARS and SGF preprocessing 
showed 96.13% accuracy, with selected 
variables in the ranges of 820-920 nm, 1050-
1300 nm, 1421 nm, and 1675 nm (Fig. 4).

Trends in model performance and 
morphological data combined the model

Models constructed using the variables selected 
via SPA did not show a trend of performance 
fluctuations with changes in the number of 
selected variables or principal components, 
except when SGF preprocessing was applied 
to reduce noise (Fig. 5). 
 With CARS, models built using variables 
selected by this algorithm showed similar 
performance improvements in the Corning and 
KSP datasets. In particular, except when SNV 
or MSC preprocessing was applied to the KSP 
dataset, model performance tended to increase 
in proportion to the number of variables selected 
and the number of principal components (Fig. 5).
 When analyzing the Corning dataset, 
combining variables selected by SPA 
or CARS with morphological variables 
improved classification accuracy. The SPA-

Table 2 The classification metrics of variable selection methods for SPA and CARS.
Corning dataset                                                                  KSP dataset

Raw SNV MSC SG Raw SNV MSC SG

SPA

components 2 2 5 3 3 8 7 9
selected 9 5 5 9 13 12 16 18

train accuracy 0.7236 0.7410 0.7934 0.7570 0.8955 0.8826 0.8720 0.9307 
test accuracy 0.4507 0.4824 0.7254 0.7570 0.8556 0.7993 0.8345 0.9014 

recall 0.4747 0.5127 0.7089 0.7215 0.8354 0.8418 0.8608 0.8861 
precision 0.5068 0.5364 0.7778 0.8201 0.8980 0.8061 0.8447 0.9333 

CARS

components 13 13 14 13 12 9 10 12
selected 16 19 14 19 16 18 19 16

train accuracy 0.9823 0.9859 0.9835 0.9788 0.9424 0.9284 0.9295 0.9683 
test accuracy 0.9542 0.9613 0.9683 0.9472 0.9296 0.8944 0.9085 0.9613 

recall 0.9367 0.9430 0.9557 0.9114 0.9430 0.9241 0.9367 0.9557 
precision 0.9801 0.9868 0.9869 0.9931 0.9313 0.8902 0.9024 0.9742 



131

Cho et al. Development of acorns discrimination model for warm-temperature....

RAW model (raw variables selected by SPA 
without preprocessing) and the CARS-SNV 
model (variables selected by CARS after 
SNV preprocessing) achieved 100% accuracy  
(Table 3). For the CARS-SNV model, 572.67 
nm showed an absolute coefficient ≥ 0.3, and 
480.74 nm showed an absolute coefficient ≥ 
0.2. For the SPA-RAW model, tno variables 
had coefficients exceeding 0.2, but the 
coefficient differences among variables were 
not significant (Fig. 6).

Discussion

The models used in this study effectively classified Q. 
acuta and Q. glauca acorns from two hyperspectral 
instrument datasets by combining preprocessing 
techniques, multivariate analysis, variable selection, 
and morphological data. In addition, we extracted 
the variables with significant influence from the 
model to create a lightweight model and explored 
the utilization of acorn morphological data to design 
an effective method for future classification studies 
of oak hybrids. 

 

Figure 4 Variables selected. (A) Corning variables selected by CARS-MSC: 526.9, 556.68, 572.67, 596.65, 628.63, 
640.62, 644.61, 648.61, 656.6, 672.59, 688.58, 712.56, 776.51, 784.5 nm. (B) KSP variables selected by CARS-SGF: 
822, 871.5, 919, 923.4, 1056.2, 1065, 1084.8, 1144.6, 1205, 1234.4, 1252.6, 1291.4, 1309.8, 1312.1, 1421.9, 1675 nm. 

Table 3 Comparison of accuracy between models built with selected variables from corning dataset and morphological 
variables.

Selected variables and morphological variables
Raw SNV MSC SGF

SPA
Selected 9 5 5 9
Whole 33 29 29 33
Components 13 13 13 13
Accuracy 1.000 0.993 0.98 0.993

CARS
Selected 16 19 14 19
Whole 40 43 38 43
Components 13 10 12 10
Accuracy 0.993 1.000 0.99 0.997

Note: SNV: standard normal variate, MSC: multiplicate scatter correction and SGF: Savitzky-Golay filtering
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Figure 5 Heatmaps of classification 
accuracies for different variable 
selection methods are presented 
for (A) the Corning dataset 
and (B) the KSP dataset. 
Spectral preprocessing) Raw: 
preprocessing was not performed, 
SNV: standard normal variate, 
MSC: multiplicative scatter 
correction, SGF: Savitzuky 
Golay filtering; Variable 
selection model) SPA: successive 
projections algorithm, CARS: 
competitive adaptive reweighted 
sampling; Hyperparameters) 
Number of components: principal 
components used in the partial 
least square discriminant analysis 
model; Number of features: 
features selected in the variable 
selection algorithm. 

Figure 6 Absolute coefficients 
of the classification models 
from selected variables and 
morphological variables.                    
A) SPA-RAW selected 
variables; B) CARS-SNV 
selected variables.
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In the visible range, the blue and red-light 
regions were thought to have a significant effect 
on species discrimination. Discrimination 
using only the 400-780 nm range of the Corning 
dataset showed an accuracy above 95%, while 
the discrimination using 400-780 nm range 
of the KSP dataset with the red and blue light 
regions removed was below 70% (Table 1). 
Also, the key variables selected by CARS 
were clustered around 550-650 nm in the 
Corning dataset, which corresponds to the red-
light region (Fig. 4). This aligns with studies 
in birch, where the absorption points of 400-
750 nm played a major role in distinguishing 
between species (Tigabu et al. 2018), and in 
maize, where differences between varieties 
occurred in the 500-700nm range (Huang et 
al. 2016), and in alfalfa, where variables in 
the 400-500 nm range affected discrimination 
between species (Yang et al. 2020). In the red-
light region, color variations due to pigments 
such as tannins and anthocyanins are known to 
influence species discrimination (Mortensen et 
al. 2021, Michelon et al. 2024).
 This suggests that the acorn shell color, 
especially in the red and blue regions, plays a 
key role in distinguishing the two species. This 
is because the color of the seed coat can be used 
as a phenotypic marker for a tree species, as it 
carries the genetic information of the mother 
trees (Bacherikov et al. 2022). However, 
since chlorophyll levels decrease during the 
maturation process of acorns (Bonner & 
Vozzo 1987), it should be considered that 
color changes caused from other substances in 
the acorn shell besides chlorophyll may have 
influenced the species classification. 
 In the near-infrared range, the key 
influencing variables seem to be around 820-
925 nm, 1050-1312 nm, 1422 nm, and 1675 
nm. The 820~925nm is the range where 
starch is expected to have a major impact on 
varietal classification (Yang et al. 2015). The 
spectral variables at 1205, 1309.8, and 1312.1 
nm are considered to be valid for variety 
classification due to the second overtone of the 

C-H stretching vibration (Feng et al. 2017). 
919 and 923.4 nm are influenced by the third 
overtone of the C-H2 stretching vibration. 
1144, 1205, and 1421.9 nm are influenced by 
the second overtone of the C-H2 stretching 
vibration, and 1675 nm is influenced by the 
first overtone of the C-H2 vibration (Metrohm 
NIRSystems, 2013). Since starch is a major 
component in acorns containing C-H and C-H2 
groups, it is believed that starch is responsible 
for the distinction between Q. acuta and Q. 
glauca acorns. The quantity, composition, and 
structural characteristics of starch have been 
shown to play a key role in variety classification 
(Jeong et al. 2010, Valková et al. 2019). With 
advances in spectral analysis of starch (Yang et 
al. 2015, Seo et al. 2020, Wang et al. 2023).
 In terms of variable selection methods, this 
study employed CARS and SPA, as these 
algorithms are commonly used in hyperspectral 
analyses for classification tasks such as crop‐
variety discrimination or seed‐quality assessment. 
For instance, Zhang et al. (2018) applied CARS 
and SPA to select optimal wavelengths for 
distinguishing okra varieties, and Pang et al. 
(2021) used both algorithms to reduce the feature 
set to 25 bands while preserving high classification 
performance for Quercus seed viability. In our 
results, CARS achieved a minimum classification 
accuracy of 89%, confirming its efficiency for 
inter‐species discrimination using only spectral 
variables. To further optimize CARS, various 
spectral preprocessing techniques were evaluated; 
within a certain range, increasing the number of 
PLS components in CARS improved the final 
model’s performance, thereby enhancing overall 
algorithm efficiency (Sun et al. 2021, Dilillo et al. 
2025).
 Notably, when SNV and MSC preprocessing 
were applied, there was a range in which 
accuracy plateaued and then declined as the 
number of PLS components increased (Figure 
5 Dataset B with CARS-SNV). This suggests 
that SNV and MSC effectively removed spectral 
noise, simplified the dataset’s complexity, and 
appropriately narrowed the hyperparameter 
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search space (Gariso et al. 2025). By contrast, 
SPA‐based models exhibited lower accuracy 
relative to CARS and, except for the KSP 
dataset with SGF preprocessing, did not show a 
trend of improved performance with increasing 
hyperparameters. This indicates that, for SPA, 
optimizing solely based on the number of 
selected variables—as in prior studies—may 
be more appropriate.
 Combining variable selection with 
morphological data seems to be very effective 
for acorn classification. In particular, the 
accuracy of the variable selection model 
extracted using SPA was 70%, but the 
classification performance improved to 
100% when morphological data was added. 
This suggests that there was an interaction 
between the variables representing the color 
of oak acorns and the morphological variables. 
This result is similar to other studies where 
adding morphological data increased model 
performance when using only multispectral 
variables alone yielded low classification 
accuracy. But the difference was that 
morphological data was ranked higher in the 
importance ranking of the variables in this 
result (Jia et al. 2022, Fu et al. 2024). 
 The reason for the difference in the importance 
ranking of morphological data is that there 
was a significant difference in the mean for 
morphological variables with high importance 
(Fig. S1). Therefore, further research on the 
importance of morphological data should 
be conducted to determine whether the same 
pattern occurs when models are built for more 
complex problems, such as the identification 
of oak hybrids. In addition, we believe that 
the model, important variables, and methods 
developed in this study for discriminating 
between acorns of oak relatives using 
morphological data, can serve as a foundation 
for more complex and sophisticated models for 
future successful breeding programs.

Conclusions

This study developed a hyperspectral‐based 
discrimination model for the acorns of two 

closely related oak species, Quercus acuta and 
Quercus glauca, and subsequently improved a 
lightweight model by incorporating important 
spectral and morphological variables. 
Specifically, CARS and SPA were optimized 
to determine the optimal combination of 
preprocessing techniques, the number 
of PLS components, and the number of 
selected variables. Using these methods, we 
demonstrated that wavelengths in the blue 
and red regions of the visible spectrum, as 
well as features responsive to the C–H and C–
H₂ bonds of starch—the primary constituent 
of acorns—play a significant role in species 
discrimination.
 A lightweight model built with the 
selected spectral variables achieved 
moderate classification accuracy, whereas 
an enhanced model that combined spectral 
and morphological data classified nearly 
all acorns with 98–100% accuracy. This 
improvement likely reduced multicollinearity 
among hyperspectral variables and enhanced 
generalization by leveraging variables with 
complementary properties. However, as seed 
samples were exclusively collected from 
Jeju Island, further validation is required to 
assess the model’s generalizability to acorns 
from other provenances or collection periods. 
Overall, these findings provide a valuable 
foundation for designing more complex 
models aimed at identifying oak hybrid acorns 
in future studies.
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