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Abstract Biotic and abiotic disturbances affect forest ecosystems. Unlike sudden 
disturbances, bark beetle outbreaks are a gradual process. Bark beetle outbreak 
triggered by windstorm in Norway spruce (Picea abies) forests was analysed 
over a 6-year period (2016-2021) in mountainous conditions (890-2,100 m a.s.l.) 
with deep valleys and high ridges. The disturbance extent and dynamics were 
assessed via remote sensing (Sentinel-2 imagery) using a supervised maximum 
likelihood classification. Topographical variables, bark beetle-related spatial 
metrics and spectral indices were assessed for predictor importance for their 
influence on bark beetle-caused disturbance dynamics by boosted regression 
trees. The overall accuracy of the classification ranged from 87-92% (Kappa 
0.84-0.89). Bark beetle spots were initiated mainly at relatively high altitudes and 
preferentially on exposed terrain. Spectral indices, such as the red-edge normalized 
difference vegetation index (RENDVI), played a consistent role across various 
years in predicting spot initiation. With respect to the spread of bark beetle spots, 
distance emerged as the most influential predictor across all years. Additionally, 
elevation and RENDVI had notable impacts on spot spreading. In the case of 
bark beetle spot initialization, the importance of different factors varied among 
years whereas for spot spreading distance was the most influential for each year.
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Introduction

In recent decades, the frequency and severity 
of wind-driven disturbances have increased 
in European coniferous forests, particularly 
affecting Norway spruce (Picea abies L. Karst.) 
populations (Nilsson & Nilsson 2004, Seidl et al. 
2011, Senf & Seidl 2020). Wind disturbances and 

drought conditions have led to a substantial rise in 
the population of the Eurasian spruce bark beetle 
(Ips typographus L.), the primary infesting agents 
of Norway spruce (Økland & Berryman 2004, 
Wermelinger 2004, Marini et al. 2013, Økland 
et al. 2016) and its associated bark beetle species 
like Pityogenes chalcographus (L.) (Jakuš 1995). 
The proliferation of beetles in warmer and drier 
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climates has been a key factor in the doubling of 
canopy mortality in Central European temperate 
forests over the past 30 years (Schelhaas et al. 
2003, Seidl et al. 2011, Senf & Seidl 2018).  
 Forests are naturally shaped by disturbances 
such as windthrows, which are often followed 
by bark beetle outbreaks - a pattern typical of 
Central European spruce forests (Parobeková et 
al. 2016, Holeksa et al. 2017). Such disturbances 
occur every two to three decades, usually 
requiring warm, dry conditions for bark beetle 
outbreaks (Mezei et al. 2017, Negrón and Cain, 
2019, Lindman et al. 2023). Norway spruce, 
which accounts for a quarter of Europe's growing 
stock, has recently experienced unprecedented 
mortality rates due to the combined effects of 
drought, windthrow, and bark beetle outbreaks 
(Senf & Seidl, 2020, 2018, Hlásny et al. 2021).
 Previous studies have utilized remote sensing 
data, such as Landsat (Hais & Kučera 2008, 
Havašová et al. 2015) and Sentinel-2 (Abdullah 
et al. 2019, Bárta et al. 2021, Huo et al. 2021) 
for mapping bark beetle infestations. While these 
approaches have proven valuable, effective forest 
management requires not only the detection of 
infestations but also the proactive identification 
of at-risk forest stands and the forecasting of 
future bark beetle outbreaks. 
 Predictive models for bark beetle infestations 
often rely on a variety of predictors, including 
forest structure, environmental variables, and bark 
beetle-specific spatial characteristics and distance 
functions (Ďuračiová et al. 2020, Fernández-
Carrillo et al. 2024). Topographic-related data, 
such as potential solar radiation, are readily 
accessible and have demonstrated significant 
value in improving the predictive accuracy of bark 
beetle attack or bark beetle caused tree mortality 
models (Mezei et al. 2019). Bark beetle attacks 
exhibit spatial autocorrelation (Kamińska 2022) 
characterized by distinct phases of infestation 
initiation and spread (Coulson et al. 1989, Jakuš 
et al. 2003). Bark beetles typically infest trees near 
previous bark beetle infestations or areas affected 
by wind damage (Wichmann & Ravn 2001, 
Stadelmann et al. 2014, Potterf et al. 2019).

 Incorporating spatial dynamics further enhances 
the predictive performance of such models. 
A critical input for many existing bark beetle 
forecasting models is terrestrial data obtained 
from forest inventories (Ďuračiová et al. 2020). 
Unfortunately, such data are often not publicly 
accessible, exhibit coarse spatial resolution 
(covering several hectares), and are updated only 
at intervals of approximately 10 years. These 
limitations reduce the timeliness and accuracy of 
predictions, highlighting the need for alternative 
data sources that can provide higher resolution and 
more frequent updates, such as remote sensing-
based predictors. To address these shortcomings, 
models incorporating predictors derived 
predominantly from remote sensing data may 
offer greater accuracy and timeliness. 
 Remote sensing techniques can provide high-
resolution, regularly updated datasets, which 
are crucial for improving the prediction and 
management of bark beetle infestations in dynamic 
forest environments. Remotely sensed data can also 
be used to extract important biophysical information 
on forests (trees) via vegetation indices, which are 
linked to various leaf physiological properties 
that affect satellite-observed spectral reflectance. 
Thus, a combination of certain bands extracted 
from digital remote sensing data can be used as 
surrogates for leaf (tree) or canopy (forest stand) 
biophysical properties (Jensen 2015), forest age 
(Chen et al. 2024) and other forest stand structural 
characteristics (Astola et al. 2019). 
 Huo et al. (2021) and Trubin et al. (2023, 2024) 
have shown that spectral indices derived from 
satellite data can be used for the identification 
of trees or parts of forest stands predisposed to 
bark beetle infestations. Ďuračiová et al. (2020) 
have used NDVI as one predictor of bark beetle-
caused tree mortality. The influence of various 
predictors varies across different phases of bark 
beetle outbreaks and over time since the onset of an 
outbreak (Mezei et al. 2014, Ďuračiová et al. 2020).
 The aim of our study was to identify appropriate 
predictive variables for forecasting bark beetle 
infestations in mountainous regions using 
available environmental and remote sensing data. 
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For this purpose, we i) mapped the spatiotemporal 
dynamics of bark beetle-induced tree mortality 
via Sentinel-2 images and ii) identified the role 
of topographic variables, bark beetle-related 
spatial metrics and spectral indices in bark beetle 
spot initialization and spreading. We focused on 
mountainous forests in a national park, where bark 
beetle-caused mortality has been mostly unaffected 
by human interventions in the past decades. 
 To address the spatiotemporal dynamics of tree 
mortality, analyses were conducted separately for 
each year, as well as for the processes of bark beetle 
spot initiation and spot expansion. Our study area 
is relatively small but consists of homogeneous 
forests with a concentrated wind-damaged zone. 
 Based on these objectives, we formulated the 
following hypotheses. The null hypothesis (H0) 
states that there is no difference in the relative 
feature importance of topographic and bark 
beetle-related spatial variables and spectral indices 
between the initialization and spreading of bark 
beetle infestation. H0: FI₁ = FI₂, where FI₁ and 
FI₂ represent the relative feature importance value 
of the several topographic variables, spectral 
indices and insect-related spatial metrics for 
the initialization and spreading, respectively. In 
contrast, the alternative hypothesis (HA) posits that 
the relative feature importance of these variables 
differs between the infestation initialization and 
spreading. HA: FI₁ ≠ FI₂. To test these hypotheses, 
we aimed to assess the predictive importance of 
these variables for the initialization and spreading 
of the observed spatiotemporal dynamics of bark 
beetle-induced tree mortality.

Materials and Methods

Study area

The study area of the Suchá dolina valley in Slovakia 
(Fig. 1) is located in the High Tatra Mountains, 
belonging to the TANAP (Tatra National Park) 
region, with an area of more than 4,000 ha. 
The composition of stands consists of natural 
homogeneous populations of Norway spruce and, 
at higher elevations, dwarf pine (Pinus mugo Turra). 
The altitude ranges from 890 to 2,100 m a.s.l. 

The climate is characterized by low temperatures 
(annual average of 5.8°C) and moderate rainfall 
(750 mm per year) (Lapin et al. 2002). 
 In May 2014, the area was affected by the 
storm Žofia, which caused windthrow damage 
in an area of more than 400 ha. Since 2016, bark 
beetle infestations have started to occur on living 
trees in this area. The location and extent of the 
intervention and nonintervention zones for both 
landscapes were obtained from Havašová et al. 
(2017), with the study area marked in Fig. 1.

Figure 1 Map of the study area (Region of ineterest) 
located in the High Tatra National Park.

Study design

The design of the study was divided into three 
parts (Fig. 2): i) data collection and processing, 
ii) image classification and accuracy 
determination, and iii) analysis of predictor 
influence for bark beetle spot initiation and 
spread. In the first part, the Sentinel-2 satellite 
images were cropped for our study area. We 
further classified the images via region of 
interest (ROI) training sets of selected image 
classes and supervised the maximum likelihood 
classification (MAXL) algorithm with the 
semiautomatic classification plugin (SCP) 
(Congedo 2021). We reduced the number of 
classes by removing the non-forested areas 
(rock formations etc.). In the second part, 
we subjected the classification to statistical 
analyses to evaluate the overall classification 
accuracy (CA) of the classifications and their 
classes on an image-by-image basis. Next, we 
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created rasters with 9 topographic variables, 2 
bark beetle-related spatial features (Table 2) 
and 5 spectral indices (Table 3). Finally, we 
analyzed the predictors of bark beetle spot 
initialization and spot spreading for each year 
via the boosted regression trees (BRT) (Elith 
et al. 2008). 

Data collection and processing

We used freely available Sentinel-2 
multispectral (MS) images (product Level-2A 
- Bottom of Atmosphere (BOA); tile numbers 
T34UCV and T34UDV; Copernicus Open 
Access Hub). Seven images were selected 
(Supplementary material) in the autumn aspect 
(Law & Nichol 2004) for the study period from 
2015 – 2021, with no or very limited cloud 
cover (less than 10%). All bands with spatial 
resolutions of 10 and 20 m (Sentinel-2 bands: 
2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12) (Grabska 
et al. 2019) were used to increase spectral 
separation between beetle-infested and healthy 
trees (Wulder et al. 2006). The satellite data 
were projected into the coordinate system 
WGS 1984 UTM Zone 34 N (EPSG: 32634), 
and a part of Tatra National Park, specifically 
the Suchá dolina valley was delineated as 
the study area. All images were imported 
into a geographic information system (QGIS 
Development Team, 2024).

 In our study, we adhered to rule of sufficient 
representativeness of image elements in the 
study area, i.e., that the minimum number 
of image features (pixels) in the training 
sets should be 10-100 times the number of 
channels required to produce a classification 
(Lillesand et al. 2015). In our case, for each 
class, we ensured that at least 280 times the 
number of pixels were present for a total of 
10 channels. Additionally, we ensured that the 
ROI selection was uniformly distributed across 
the entire area, i.e., maximizing the variance 
of the ROIs. Fragments of classes with high 
variability in values were partitioned during 
ROI classification using the quantitative ROI 
selection method. All classes contained in 
their own ROIs for the 2021 model snapshot 
can be seen in Table 1. The classes prepared 
for classification were determined based on 
the type of forest damage and the tree species. 
Specific land cover types of non-vegetative 
origin were noted and later removed from 
the analysis. The classes were categorized 
as follows: Bark beetle caused tree mortality 
(BB; shadow and light), Windthrow area (Žofia 
storm in 2014; shadow and light), Healthy 
Spruce Forest (shadow and light), Dwarf Pine 
Forest (shadow and light), other and logging 
(before beetle detection in 2015).

Figure 2 Study design. Abbreviations: T34UCV – tile identifier in the UTM map projection, specifying a precise 
geographic area within Zone 34U and tile CV; T34UDV – tile identifier in the UTM, specifying a precise 
geographic area within Zone 34U and tile DV; SCP – semiautomatic classification plugin; ROI – region of 
interest; MAXL – maximum likelihood classification; ENVI – environment for visualizing images software; 
BB – bark beetle-caused tree mortality; W – windthrow; HF – health spruce forest; BRT – boosted regression 
trees model; initial (initialization) and spreading (spreading).
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Table 1 All classes stand mapped in this study 
with the number of polygons and pixels used 
as training for classification (based on multi-
spectral image from 2021).

Classes No. of 
polygons

No. of 
pixels

BB* shadow 10 307
BB* light 18 643
Wind shadow 4 452
Wind light 13 1 824
Forest shadow 14 2 127
Forest light 13 2 507
Dwarf Pine shadow 4 1 765
Dwarf Pine light 16 4 398
Other 22 13 219
Logging 4 900
Total 118 28 142

Note: *Bark beetle infestations

 To facilitate post-classification analysis, 
we merged shaded and unshaded versions of 
each land cover class into unified categories 
(e.g., BB shadow and BB light into BB), as 
depicted in Fig. 5. This step reduced the class 
fragmentation caused by topographic shading 
and ensured consistent input for accuracy 
assessment and subsequent modeling. We 
categorized bark beetle-induced tree mortality 
(BB) into two groups: the initialization of 
bark beetle infestations refers to the initial 
emergence of new bark beetle spots causing tree 
mortality from all sites surrounded by healthy 
forests or other classes, while the spread of bark 
beetle infestations refers to the spread of tree 
mortality from previous BBs at time tn-1 or from 
windthrow (Jakuš et al. 2003, Ďuračiová et al. 
2020). Any bark beetle-caused tree mortality 
more than 50 m away from previous bark beetle 
infestations was classified as “Initial”.

Classification accuracy

To assess the accuracy of the classification 
results, we computed confusion matrices using 
photo-interpretation from the ROI, which were 
selected from all delineated ROIs based on 
high-resolution Google Earth imagery (from 

2014). This resulted in the determination of CA 
and the kappa coefficient (Olofsson et al. 2013). 
Additionally, we computed the macro average 
F1 score (see Supplementary material), which 
is the harmonized average of producer and user 
accuracies (Zhong et al. 2019). For the overall 
accuracies, 95% confidence intervals were 
calculated based on the total variance of the 
accuracies (Olofsson et al. 2014). To assess the 
classification accuracy (CA), we used stratified 
random sampling on the 118 clean sub-areas 
described in Table 1, with the number of samples 
varying from year to year to maintain the rule of 
thumb of sufficient representativeness of image 
features (Lillesand et al. 2015). We followed 
the recommendation of Olofsson et al. (2014), 
we did not perform proportional allocation and 
increased the sample size for rarer classes.

Influence of predictor variables

We surveyed healthy forests and windthrows on 
the 2015 satellite image, and in subsequent years, 
we focused only on the bark beetle that caused 
tree mortality. The supervised classification 
was performed using the maximum likelihood 
algorithm (MAXL) implemented in the Semi-
Automatic Classification Plugin (SCP) in 
QGIS. The resulting classified rasters were 
then used for calculating spectral vegetation 
indices for each year of the study. Based on 
previous studies (Baier et al. 2007, Mezei et 
al. 2019), the patterns of bark beetle-induced 
tree mortality are closely related to potential 
solar radiation and other abiotic characteristics 
that can be derived from digital terrain models. 
Since 2017, the Geodesy, Cartography and 
Cadastre Authority of the Slovak Republic 
has provided a digital terrain model (DTM), 
DTM 5.0, of the entire territory of the Slovak 
Republic, created from light detection and 
ranging (LiDAR) data (GCCA SR 2024). In 
our area of study, the density is 30 points per 
m2 (Ďuračiová & Pružinec 2022). 
 The model is provided in raster format at a 
spatial resolution of 1 m and provides a suitable 
basis for modeling relief parameters and 
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potential solar radiation. To derive topographic 
characteristics, we used a digital elevation 
model (DEM) to calculate topographical 
position indices (TPIs), aspect, heat load 
indices (HLIs), and potential solar radiation. To 
calculate distances from bark beetle-induced 
tree mortality, we transformed all obtained 
classifications into vector files. We then took the 
vectors of the healthy forest and both classes of 
bark beetle-caused tree mortality from the 2016 
image and applied them to the rasters from the 
set of vegetation indices, topography and bark 
beetle-derived spatial characteristics (Tables 2 
and 3). Vegetation indices from one year prior to 
tree mortality detection were used as predictors.
 We exported the data for each year into a single 
matrix and applied boosted regression trees - BRT 
(Elith et al. 2008), to assess the predictive influence 
on the initialization and spread of bark beetle-

induced tree mortality. The response variables 
included the presence of spot initialization and the 
presence of spot spreading. We used explanatory 
variables described in Table 2 and 3. The BRT 
method is suitable for interpreting numerous 
independent characteristics relative to dependent 
parameters (Elith et al. 2008). 
 Our study involved testing forest mortality 
values in the current year against healthy forest 
indices from the previous year (tn-1). Each BRT 
analysis for each year fitted a function minimizing 
the error between the actual and predicted values. 
Boosted regression trees utilize multiple decision 
tree predictions to make a final prediction which 
is achieved by the boosting process, where each 
tree is constructed on the basis of the errors of 
the preceding tree, progressively increasing the 
model's efficiency (XGBoost, 2024). Regression 
trees with over 5,000 iterations were constructed, 

Table 2 List of topographic and bark beetle-related spatial variables used in the BRT analyses.

Topographic variables Short description Source Abbreviation

Elevation Elevation above sea level (from a DEM). GCCA SR 2024 Elevation

Heat load index Normalized angle of incident solar radiation 
calculated from the DEM.

McCune & Keon 
2002 HLI

Slope The incline of a surface, measured in degrees 
from horizontal (0°-90°). ESRI 2024 Slope

Solar radiation Potential solar radiation calculated on the basis 
of the DEM.

Ďuračiová & 
Pružinec 2022 Solar radiation

Aspect transformed to 
angular distance from the 
south*

The slope azimuth calculated from the DEM 
transformed into the angular distance from 
the south (‘southness’) measured in degrees 
(0°-180°).

Deng et al. 2009 Aspect

Topographic position 
index 50

Differences of each cell value of DEM and the 
mean elevation of the specified neighborhood 
of that cell (50 m, 100 m, 250 m, 500 m).

Weiss 2001; 
Ďuračiová & 
Pružinec 2022

TPI 50

Topographic position 
index 100 TPI 100

Topographic position 
index 250 TPI 250

Topographic position 
index 500 TPI 500

Bark beetle-related spatial 
variables Short description Source Abbreviation

Distance Distance from bark beetle outbreaks.
Jakuš et al. 2005; 
Ďuračiová et al. 
2020

Distance

Pressure Initial Amount of infested forest around a cell. 
They are inverted and normalized using the 
maximum initialization and spreading distance 
from the first year of analysis.

Kärvemo et al. 
2014a

Pressure Initial

Pressure Spread Pressure Spread

Note: *Aspect is an important terrain parameter, but it is difficult to include it directly in the analysis because 
of its angular scale (0° to 360°, with values of 0° and 360° being close to each other).
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ensuring the inclusion of rare classes such as BB 
initialization. Visualization of fitted functions in 
the BRT model is achieved via partial dependence 
plots, accounting for the effect of all other variables 
(Elith et al. 2008). This approach predisposes BRT 
models to capture nonlinear relationships between 
input variables and the target variable. Model 
evaluation relies on the area under the curve 
(AUC), with higher values indicating better-fitting 
models (Parisien and Moritz 2009). 
 We used a Bernoulli family algorithm to model 
the fit, mapping values of 0 and 1 (presence of 
bark beetle-initialization or spreading pixels). 
All the models were generated in R 4.1.3 
(R Core Team, 2020) via the gbm package 
(Ridgeway 2024) and extensions developed by 
Elith et al. (2008) and Leathwick et al. (2011).

Results

Time series analysis of beetle-caused 
tree mortality 

Windthrown areas acted as sources of 
bark beetle-induced tree mortality in the 
surrounding forest. The Žofia windstorm and 
bark beetles affected a total of 1,253 hectares, 
with 401 hectares and 852 hectares attributed 

to each, respectively. Between 2015 and 2017, 
during the initial and epidemic phases, 804.5 
hectares of forest died, with 401 hectares due 
to windthrow and 403.5 hectares due to bark 
beetles. The area of dead trees in the post-
epidemic phase (2018-2021) was 449 ha (bark 
beetle-caused forest damage only), as shown in 
Fig. 3. Tree mortality caused by bark beetles 
exhibited a negative trend until 2019, after 
which it increased. Notably, the 2018 and 2019 
image classifications revealed an increase in 
the area of healthy forest. This was probably 
caused by forest succession in areas previously 
affected by wind and bark beetles.

Table 3 List of spectral indices used in the BRT analyses.

Variables Short description Source Abbreviation

Enhanced vegetation 
index

It uses the blue reflectance region to correct for soil 
background signals and to reduce atmospheric influences, 
including aerosol scattering.

Huete et al., 
2002 EVI

Leaf area index This index is used to estimate foliage cover and to forecast 
crop growth and yield.

Baret & 
Guyot, 
1991

LAI

Normalized 
difference vegetation 
index

This index is a measure of healthy, green vegetation use of 
the highest absorption and reflectance regions of chlorophyll.

Rouse et al., 
1974 NDVI

Plant senescence 
reflectance index

This index maximizes the sensitivity of the index to the ratio 
of bulk carotenoids to chlorophyll. An increase in PSRI 
indicates increased canopy stress (carotenoid pigment), the 
onset of canopy senescence, and plant fruit ripening.

Merzlyak et 
al., 1999 PSRI

Red-Edge NDVI

This index is a modification of the traditional broadband 
NDVI. It capitalizes on the sensitivity of the vegetation red 
edge to small changes in canopy foliage content, gap fraction, 
and senescence.

Gitelson & 
Merzlyak, 
1994

RENDVI

Simple ratio index
Ratio of the wavelength with highest reflectance for 
vegetation and the wavelength of the deepest chlorophyll 
absorption.

Birth & 
McVey, 
1968

SRI

Figure 3 Temporal dynamics of relative tree mortality 
driven by windthrow and bark beetle infestations in 
2015 – 2021. 
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Classification accuracy of Sentinel-2 data

The evaluation of the overall classification 
accuracy and the influence of random factors 
that may have caused misclassification (forest, 
wind, bark beetle) are shown in Table 4. 
The CA was approximately 92% (p < 0.01). 
The influence of the random component is 
interpreted by the kappa index, whose mean 
value is 0.88. The influence of the random 
factors was statistically insignificant. Owing to 
the separated classification of the unshaded and 
shaded parts, we achieved greater variability 
in the average classification accuracy of each 
class, which has a positive effect on increasing 
the accuracy of the overall image classification.

 The classification visualization based on the 
Sentinel-2 multispectral images in Fig. 4 clearly 
interprets the sensitivity of the unshaded and shaded 
portions of the healthy and damaged forest.  Figure 
4 shows the classification result of the image from 
2015, prior to beetle caused tree mortality (Fig. 5). 

Table 4 Overall classification accuracy (CA) considering a 
random component via the kappa index and p-value.

Year CA* [%] Kappa ∆p
2015 90.87 0.89 ± 0.0029
2016 89.45 0.87 ± 0.0032
2017 90.68 0.88 ± 0.0032
2018 91.15 0.89 ± 0.0032
2019 91.56 0.89 ± 0.0031
2020 87.39 0.84 ± 0.0039
2021 91.81 0.89 ± 0.0032

Figure 4 MAXL classification result for the 2015 image of the Suchá dolina Valley.

Figure 5 Spatial distribution of bark beetle-induced tree mortality time series from 2016 – 2021 and the windthrow area 
recorded in 2015.
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Effects of predictor variables

BRTs were used for the analysis of the effects of 
predictor variables on tree mortality caused by 
bark beetles. The importance of the topographic 
variables, bark beetle-related spatial variables 
and spectral indices is listed in Table 5. To 
interpret the effect of predictor variables on 
bark beetle spot initialization and spread in each 
year, we selected the 4 characteristics that had 
the strongest variable importance according to 
the BRT model. The shape of the relationship 
with the initialization or spread of beetle-
caused tree mortality is in Figs. 6 and 7. Partial 
dependence values show the effect of a variable 
on the response variable after accounting for 
the average effects of all other variables in the 
model (Friedman 2001, Friedman & Meulman 

2003). The vertical axis of all the graphs shows 
the fitted BRT function. If the fitted function is > 
0, the probability that a given pixel experienced 
tree mortality by bark beetles is above 50%.
Initialization of the bark beetle caused tree 
mortality
In 2016, the first year of tree mortality, 
topographic and bark beetle-related spatial 
metrics were more impactful than spectral indices 
(Fig. 6a-d). Distance had a predictive importance 
ranging from 9.9% to nearly 24%, indicating that 
bark beetles are over 50% likely to infest forests 
located 50 to cca 400 meters from the stand edge. 
More than 90% of infested pixels fell within this 
distance range (Fig. 6a). Other variables had less 
than 8% importance (Table 5).

Table 5 Importance of topographic variables, bark beetle-related spatial metrics and spectral indices across all forest 
damage classes from 2016-2021 based on BRT analysis. Variables with an influence above 10% are highlighted 
by bold font. For a description of the predictor variables, we refer to Tables 2 and 3.

Variable
2016 2017 2018 2019 2020 2021
Initial Spread Initial Spread Initial Spread Initial Spread Initial Spread Initial Spread

BB 
sp.m.

Distance 11.9 19.6 20.2 19.2 13.7 12.1 9.9 22.7 23.7 21.7 25.6 17.3
BB presure 7.2 17.5 6.9 5.7 5.3 7.6 3.5 8.1 5.9 8.5 3.1 5.6

Spatial 

Elevation 8.8 7 6.7 8.6 3.4 11 7.6 10 8.1 9.7 4.7 8.5
Slope 5.4 4.1 4 4.7 1.6 5.8 2.5 3.5 3 3.7 1.6 4.6
Aspect 4.9 3 4 4.1 1 3.5 12.8 2.4 4 3.1 1.4 4.7
TPI_500 7.1 4.2 5 4 7 4.7 1.4 2.9 11.5 2.9 2.7 3.6
TPI_250 5.1 3.1 4.2 3.9 1.1 4.5 3.7 2.7 8 2.5 3.9 3
TPI_100 5 2.8 4.1 4.2 1.6 4.7 6.3 2.7 4.5 2.8 2.2 2.9
TPI_50 5.6 3.4 3.9 4 1.5 4.4 1.9 2.7 3.4 2.9 1.1 3.7
Solar 
radiation 5.1 2.9 4.9 3.5 3.1 3.8 4.7 2.4 2.4 3 2.2 3.3

Spectral  

HLI 4.1 2.5 3.9 3.2 1.2 3 3.1 1.8 4.1 3 1.9 3.9
NDVI 5 4.5 8.1 7.8 9.1 7.6 8.3 7.9 3 7.2 2.6 5.4
PSRI 6.9 7 4.7 6.1 23.5 5.6 3.6 4.6 6.3 8.6 5.4 15.5
EVI 6.4 4.7 4.8 5.3 2 6.2 12.8 5.1 3 4.7 36.1 7.9
SRI 4.7 4.3 8 8.7 10 7.6 8.6 10.7 3 6.4 4 4.6
RENDVI 6.8 9.4 6.6 7 14.9 7.9 9.3 10 6 9.3 1.4 5.5

Training 
data 
AUC

 0.99 0.976 0.99 0.981 0.998 0.98 0.999 0.994 1 0.98 1 0.992

CV cor*  0.81 0.75 0.9 0.74 0.93 0.73 0.9 0.85 0.94 0.78 0.97 0.8
Note: BB sp.m.: Bark beetle related spatial metrics; Spatial: spatial characteristics; Spectral: Spectral characteristics; BB 

pressure: Bark beetle pressure; CV cor*: CV correlation*; Cross-validation correlation in BRT; With the PSRI and 
RENDVI showing opposite effects, higher PSRI values correlated with greater infestation initiation, and vice versa; 
While PSRI and RENDVI had weak predictive values. 
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Figure 6 Most important predictor variables for initial bark beetle cased tree mortality based on BRT analysis between 
2016 – 2021.

Figure 7 Most important predictor variables for the spread of bark beetle-induced tree mortality based on BRT analysis 
in the Suchá dolina Valley between 2016 – 2021. 
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 In the second year of the outbreak (2017) 
(Fig. 6e-h), the importance of distance 
increased to over 20%. Infested pixels were 
again concentrated within 100–300 meters of 
windthrown plots (Fig. 6e). NDVI analysis 
revealed that pixels most susceptible to beetle 
initialization had NDVI values between 0.5 and 
0.7, with similar predictive importance as SRI.
 For newly infested pixels in 2018 (Fig. 6i-
l), the PSRI emerged as the most important 
variable with a significance of 23.5%, followed 
by RENDVI at 14.9%. Distance patterns 
remained consistent with previous years, 
showing initialization at PSRI values of 0.05-
0.2 and RENDVI values below 0.3 at distances 
of 100 – 150 meters from the stand edge.
 In 2019 (Fig. 6m-p), the initial disturbance 
resulted in the smallest area of infestation, with 
under 120 pixels recorded (Table 1). Distance 
showed a predictive importance of nearly 10%. 
The aspect also played a role, suggesting that 
bark beetles favored northern slopes.
 By 2020 (Fig. 6q-t), distance had a predictive 
importance of almost 24%, correlating strongly 
with over 90% of infested pixels located between 
50 and 250 meters from the stand edge. TPI_500 
showed nearly 12% importance, indicating 
susceptibility at altitudes above 900 m a.s.l., 
while PSRI and RENDVI had weak perspective 
values (Table 5).
 In the final year analyzed (2021) (Fig. 6u-x), 
EVI and distance were key factors in new bark 
beetle disturbances, with variable importance 
values of 36% and 26%, respectively. New 
infestations occurred at EVI values between 
0.4 and 0.8 and distances of 100 to 300 meters 
from the stand edge.

Spread of bark beetle-caused tree mortality
In 2016, distance was the most important 
factor influencing bark beetle spread, with a 
variable importance of nearly 20%. The highest 
probability of spread occurred at distances 
to 180 meters from existing infestations. 
Additionally, the pressure from beetle outbreaks 
was significant, with an importance of 17.5%. 
Most infestations were found at elevations 

ranging from 1,100 to 1,500 meters (Fig. 7a-d).
 The following year, distance continued to 
dominate as a predictor, showing an importance 
of 19%. However, the second most important 
variable shifted to SRI, with spread occurring 
at index values of 1-7 (Fig. 7e-h).
 In the next assessment (2018), distance remained 
a strong predictor with an importance of 12%. The 
patterns observed were similar to those in previous 
years, with spread occurring at distances to 150 
meters. Elevation also played a significant role, 
achieving an importance of 11% (Fig. 7i-l).
 As bark beetle activity declined, distance 
still proved crucial, showing an importance of 
almost 23%. Most infestations occurred within 
100 meters from the stand edge. Notably, the 
SRI gained significance, with a predictive 
importance of nearly 11% at levels 0 to 4. 
RENDVI and elevation both had around 9.9% 
importance (Fig. 7m-p).
 In the following year (2020), distance continued 
to be the primary predictor for bark beetle spread 
with an importance of 22%. Elevation followed as 
the second most significant factor at nearly 10%. 
RENDVI showed over 9% predictive ability at the 
index levels from 0.3 to 0.45 (Fig. 7q-t).
 In the final year of the study, distance 
remained critical with over 17% importance and 
similar patterns to those observed previously. 
 The PSRI increased to a variable importance 
of 15.5%, indicating that higher PSRI values 
correlated with beetle spread. Elevation 
maintained an importance of about 8.5%. 
EVI, pressure spread, and RENDVI all had 
variable importance values below 8%, with 
EVI showing a positive trend for beetle spread 
while pressure spread and RENDVI exhibited 
negative trends (Fig.7, Table 5).

Discussion

During the period of 2016-2021, approximately 
1,200 ha of forest were affected by wind (401 
ha) and bark beetles (852 ha) disturbances 
in the 4,000-ha study area, as noted from 
Sentinel-2 images. Boosted regression trees 
have been applied to identify predictors of bark 
beetle-induced tree mortality. In the case of 
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bark beetle spot initialization, the importance 
of different factors varied among years (Table 
5, Fig. 6). For spot dispersal, distance was the 
most important factor every year (Table 5 and 
Fig. 7). These findings are in agreement with 
those of previous works (Wichmann & Ravn 
2001, Lausch et al. 2011, Potterf et al. 2019, 
Stadelmann et al. 2014, Ďuračiová et al. 2020, 
Fernández-Carrillo et al. 2024 ).

Quality of Satellite Data Classification 

Compared with Lausch et al. (2013), who 
achieved a classification accuracy of 64% for 
infested and healthy trees, the methods applied 
in our study achieved a significantly higher 
overall classification accuracy, averaging 
approximately 90% over the years 2015-2021. 
This improvement is corroborated by the 
kappa index, which has a mean value of 0.88, 
indicating strong agreement beyond chance. In 
addition, the statistical analysis revealed that 
the influence of random factors such as forest 
conditions, wind and bark beetle infestations 
was insignificant, further confirming the 
robustness of our classification approach. 

Factors related to bark beetle spot 
initialization

The bark beetle outbreak was initiated by a 
windstorm in May 2014. The most important 
variable influencing tree mortality is often 
the number of colonized wind-felled trees 
(Kärvemo et al. 2014b), which, in our case, 
could be stronger than the effect of topography. 
The most important predictors of windstorms 
are usually severe weather conditions and 
the height of P. abies (Kärvemo et al. 2023). 
However, the occurrence of such events is 
very infrequent, especially for a timeframe, 
as represented in our study. Ips typographus 
developed on freshly broken and uprooted 
spruce trees (Hroššo et al. 2020). The most 
influential predictors of the initialization of 
new spots were distance, bark beetle population 
pressure, altitude, topographic position and 
spectral indices (RENDVI, PSRI).
 Bark beetle population-related spatial features, 

particularly the distance from previous   infestation 
edges, emerged as significant predictors. Infestations 
were concentrated within 50 – 300 m from previous 
infestation edges. We only consider an infestation 
to be a new spot initialization if it is more than 50 
m from the previous infestation. The 50 m distance 
threshold is the result of our methodology and the 
data used. The predictive importance of distance was 
each year ranked as the most important factor for 
bark beetle spread. These findings are in agreement 
with the results of Wichmann and Ravn (2001), 
Stadelmann et al. (2014), Potterf et al. (2019) and 
Fernández-Carrillo et al. (2024). Another important 
variable was bark beetle population pressure. This 
was an important factor at the beginning of the bark 
beetle outbreak (Kärvemo et al. 2014b).
 In our study area, the wind-damaged stands 
were located at relatively low elevations, and bark 
beetle infestations spread upward. The observed 
altitudinal spread of bark beetle infestations 
moving from lower to higher elevations may be 
closely linked to thermal conditions. Warmer 
temperatures at lower altitudes can accelerate 
insect development, increase the number of 
generations per season, and enhance fecundity, 
as demonstrated in several bark beetle species 
(Jönsson et al. 2009). This may lead to initial 
outbreaks at lower elevations, which subsequently 
expand to higher altitudes. While temperature and 
precipitation are key climatic drivers of bark beetle 
dynamics (Marini et al. 2012), these variables 
were not directly included in our analysis. 
 In mountainous regions, microclimatic 
variability can significantly influence insect 
life cycles, yet such fine-scale data are often 
unavailable or unreliable when derived from 
distant weather stations. To address this, we used 
solar radiation as a thermal proxy, as it can be 
modeled directly from DEM and reflects local 
topographic conditions (Mezei et al. 2019). 
Despite its limitations, this approach provides a 
spatially explicit estimate of thermal input, which 
may offer insights into bark beetle population 
dynamics across heterogeneous landscapes. 
 The topographic position index (TPI_500) 
was also an important variable. Stadelmann et 
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al. (2014) reported that terrain exposure is a 
strong predictor of wind damage and bark beetle 
infestation. Furthermore, topographical factors 
such as elevation influence the likelihood of 
infestation, with specific thresholds identified 
for susceptibility. Elevation and TPI_500 had 
some impact on the infestation of trees by bark 
beetles. The results show that the initialization 
of the outbreaks starts at lower altitudes than 
their spread. Other local topographical variables 
had weak effects on tree infestations (Table 5).
 The spectral indices did not exhibit 
homogenous patterns during the study. The 
RENDVI was an important variable in almost 
all years. It is highly sensitive to variations 
in chlorophyll content, which can serve as 
reliable indicators of the early stages of leaf 
senescence. Furthermore, the events that occur 
in senescing and aging of leaves are similar to 
those occurring in plants under stress. It is also 
distinct under conditions with high chlorophyll 
concentrations or landscapes with high leaf 
area indices (Gitelson & Merzlyak 1994). 
 The RENDVI has shown proficiency in 
identifying not only significant damage to 
spruce stands but also subtle variations in 
tree physiological conditions, particularly in 
instances where high defoliation levels are not 
evident (Mišurec et al. 2016). Additionally, 
the RENDVI is correlated with nitrogen 
concentrations (de Oliveira et al. 2017), 
above-ground biomass (Imran et al. 2020), 
discoloration (Xie et al. 2018), and soil 
moisture (Siegfried et al. 2019). Additionally, 
environmental factors such as elevation, 
influenced the likelihood of infestation, with 
specific thresholds identified for susceptibility.  
 An important vegetation index for forest health 
assessment was the plant senescence reflectance 
index (PSRI), which measures needle senescence.

Factors related to bark beetle spot 
spreading

Despite fluctuations in bark beetle activity 
over time, distance remained consistently the 
most influential predictor of bark beetle spot 

spreading. The role of distance represents a 
key distinction between the processes of spot 
initialization and spot spreading. In the case of 
spot initialization, the importance of distance 
was observed to vary over time. In contrast, for 
spot spreading, distance was the most important 
predictor across all years. Analyses of bark 
beetle outbreaks suggest that the infestation 
process mainly occurs at a scale of a few 
hundred meters (Kautz et al. 2011, Kärvemo 
et al. 2014a, Potterf et al. 2019, Müller et al. 
2022). In our case, distance was among the 
most common variables with high variable 
importance for bark beetle spot spread (Table 
5). The spread occurred mainly at altitudes 
of 1,200 – 1,400 m. Other significant factors, 
which had a notable impact in all years, were 
elevation and RENDVI index. This vegetation 
index was also an important predictor of spot 
initialization.

Limitations of the study

The main limitation of our study is the relatively 
small study area and short time span; however, 
image processing with high-resolution satellite 
imagery can be time consuming, especially for 
highly diverse terrains where long mountain 
range spans complicate tree and disturbance 
identification. Other studies that used 
Sentinel-2 images used specific trees as basic 
sample sizes (Dalponte et al. 2023), polygons 
of different sizes (Lastovicka et al. 2020, Bárta 
et al. 2021), several hundred hectares of forests 
(Huo et al. 2021) or entire landscapes (Migas-
Mazur et al. 2021).
 While climate was not taken into account in 
this study, we included potential solar radiation 
as an explanatory variable linked to preferred 
infestation locations (Hroššo et al. 2020), and 
solar radiation acted as one of the influencing 
variables, at least during the peak phase of the 
outbreak (Mezei et al. 2014, Mezei et al. 2019). 
 The importance of solar radiation suggests 
that temperature stress is exacerbated by 
solar exposure and further implies a direct 
physiological influence of these variables on tree 
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health. Solar radiation was positively associated 
with bark beetle-caused tree mortality in 2 of 
the 4 surveyed locations in California (Young 
et al. 2023). Hence, in the present study, solar 
radiation was not among the most influential 
variables. Owing to the small size of the 
study area (4,000 ha), we did not expect large 
differences in bark beetle population dynamics 
(Lindman et al. 2023) among the different forest 
patches. The importance of variables can vary 
during drought periods (Müller et al. 2022, 
Nardi et al. 2023).

Practical implementation

In our study, we used only remote sensing data 
and a DEM, and we did not include data from 
forest management plans. The resolution of the 
forest management plan data is much lower 
than the satellite data we employed. However, 
tree dimensions and tree age are variables 
usually reported in forest management plans 
and are highly important predictors for bark 
beetle infestations (Ďuračiová et al. 2020). We 
used vegetation indices instead. Despite this 
limitation, we achieved relatively reliable results. 
This finding shows that models for predicting 
bark beetle infestations can be constructed on the 
basis of only remote sensing data. Models can be 
incorporated into online web services and used 
for bark beetle population control or incorporated 
into online decision support systems. Our results 
have the potential to significantly improve forest 
protection measures.

Conclusion

We have shown that models based on accessible 
environmental data and remote sensing 
information, especially vegetation indices, can 
effectively predict bark beetle infestations.
 In the case of bark beetle spot initialization, 
the importance of different factors varied 
among years. Bark beetle spots were initiated 
mainly at middle altitudes and preferentially on 
exposed terrain. Spectral indices, particularly 
RENDVI, play a consistent role across various 
years in predicting spot initiation.

 With respect to the spread of bark beetle 
spots, distance emerged as the most influential 
predictor in all years, underscoring its pivotal 
role in understanding infestation dynamics. 
Additionally, elevation and the RENDVI had 
notable impacts on spot spreading. Practical 
implications suggest that models based on freely 
accessible topographical and remote sensing 
data, can reliably predict bark beetle infestations.
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