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Abstract. The logarithmic transformation of the dependent variables for 
models developed using regression analysis induces bias that should be cor-
rected, regardless its magnitude. The simplest correction for bias was pro-
posed by Sprugel (1983), which basically multiplies the back-transformed 
estimates with the constant value of exponential of half the variance of the 
errors of the logarithmically transformed variable. While this correction is 
fast and easy to implement does not supplies estimates of the variability 
existing in the original data. Consequently, a procedure based on gener-
ated data was developed to provide unbiased estimates for both attribute 
of interest and variability existing along the model. The procedure reveals 
that valid estimates can be obtained if large number of values is gener-
ated (e.g., 5000 values/x). The procedures supplies accurate estimates for 
the attribute of interest and its variability, but encounters significant data 
processing difficulties for models with more than one predictor variable. 
Nevertheless, irrespective the number of predictor of variables and mag-
nitude of the correction factor computed by Sprugel, the estimates deter-
mined using logarithmic transformations should be corrected for bias, to 
avoid cumulated errors or chaotic effects associated with nonlinear models.
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Introduction

The advent of information technology charac-
terizing the last three decades led to develop-
ment of accurate and unbiased models describ-
ing different forest processes, such as growth, 
yield, changes in species density, or carbon 
storage (Adams & Titus 2009, Nitschke & 

Innes 2008, Pretzsch 2009, Weiskittel et al. 
2011). The impact of technological advance-
ments was noticeable not only in development 
of complex models but also in addressing the 
bias, as it made possible the estimation of the 
coefficients for nonlinear models in an usable 
amount of time (Gentleman & Ihaka 2012, 
Gould 2012, Nie & Hull 2012, SAS Institute 
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2010). However, the nonlinear models were 
developed long before the computation sup-
port was widely available (Assmann 1970, 
Giurgiu 1979, Schumacher & Hall 1933, Spurr 
1952). The lack of computational power avail-
able before 1980 lead to development of mod-
els on which the dependent variable is trans-
formed, the case of site index equation (Clutter 
et al. 1983), or volume equations developed 
by Schumacher and Hall (1933) or Giurgiu 
(1979). Transformation of the dependent vari-
able achieves two purposes: 1) fits the model 
better to the data, and 2) usually reduces the 
variability, consequently, increases the signifi-
cance of statistical tests. In practice, nonlinear 
models are derived using linear regression on 
transformed variables. The linear regression 
analysis is recommended on transformed vari-
ables, as the transformation focuses on the 
linearization of the relationship between vari-
ables (Miller 1984). This approach to nonlin-
ear models is presented extensively in most 
statistics textbooks (Montgomery et al. 2006, 
Neter et al. 1996, Rao 1973, Zar 1996). Never-
theless, when least square procedure , as devel-
oped by Cotes (Edleston 1850) and formalized 
by Legendre (1805), is used in estimating the 
parameters of interests the results are biased 
(Miller 1984). The presence of bias in the re-
sulted models did not stop the need for models 
describing different environmental processes. 
Therefore, in time, a significant amount of 
equations were developed and implemented 
by different agencies, private, state or federal, 
in the day-to-day activities. Since these models 
are commonly present in routine computations 
of different entities acting in environmental 
area, there is of significant interest to develop 
a procedure that would maintain the equations 
in use but will correct their bias. This task is 
simple if the original data are available. Un-
fortunately, in many instances the original data 
used to develop the model cannot be used, as 
they are missing, protected by copyrights or 
privacy rights, or on hardcopy and difficult/ex-
pensive to digitize. The objective of the present 

research is 1) to prove the existence of bias in 
environmental models based on logarithmic 
transformation of predicted variables, 2) to 
provide at least one methodology of correcting 
the bias induced by the logarithmic transfor-
mation of the dependent variable in absence 
of original data, but with some information 
available (e.g. summary statistics or graphs 
showing the relationship between variables). 
The present research complements the work of 
Sprugel (1983), Beauchamp & Olson (1973), 
which provides bias corrections for log-normal 
variables but using the original data.

Methods

Bias of lognormal distributed variables devel-
oped using least square method

The least square (LS) method was used exten-
sively in the last two centuries in almost all 
areas of science, and was likely first described 
by Cotes (Edleston 1850), which noticed that 
combination of observations in the estima-
tion process leads to a decrease in errors. The 
observations of Cotes, confirmed by Gauss 
(Bjorck 1996) and proved by Legendre (Leg-
endre 1805), led to the wide spread usage of 
the method on applied sciences in conjunction 
with regression analysis. However, LS method 
can lead to biased results when used in com-
binations with regression on transformed vari-
ables, as indicated by various authors (Finney 
1941, Neter et al. 1996), and are based on the 
Cauchy–Bunyakovsky–Schwarz inequality 
(Poole 2005). The proof that models developed 
from linear regression of transformed vari-
ables are biased can be carried in three steps: 
1) proof that the regression line contains the 
“average” point, namely the point with coor-
dinates the arithmetic average of all values for 
each variable (i.e. axis), 2) proof that the arith-
metic average is different than the geometric 
average, and 3) proof that LS method applied 
to lognormal variable leads to comparison of 
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arithmetic mean with geometric mean. In this 
section a complete proof of the bias in log-
normal variable is presented. The selection of 
logarithmic transformation was recommended 
by three factors: 1) logarithmic transformation 
is one of the most used transformations in en-
vironmental investigations (Schabenberger & 
Pierce 2002, Williams 1997), 
2) log-normal distribution was 
extensively studied in the last 
100 years (Aitchison & Brown 
1957, Crow & Shimizu 1988), 
3) being one of the distributions 
from the exponential family of 
distributions (Darmois 1935, 
Koopman 1936) it can be relat-
ed with the LS method,  as LS corresponds to 
the maximum likelihood criterion if residuals 
have a normal distribution (Neter et al. 1996).
 To show that the “average” point [i.e., point 
with coordinates ( , )y x , where y is the de-
pendent variable, and x is the vector of predic-
tor variables, xj, j from 1 to k, and k the number 
of predictor variables] lays on the regression 
line 

       
                                       
                         
when LS method is used for parameter estima-
tion, one can start from the aim of LS estima-
tion, which is the minimization of the sum of 
squared residuals (i.e., a residual is the dif-
ference between the measured value and the 
value predicted by the regression equation), 
as required by the Gauss- Markov theorem 
(Plackett 1950):
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where: yi is the ith measurement of the depend-
ent variable y; xj,i is ith measurement of the in-
dependent variable xj; b0 is the intercept; bj is 
the coefficient of the independent variable xj; n 
is the total number of measurement (aka obser-

vations); k is the total number of independent 
variables
 The minimum of expression 2 is reached in 
a point that has all partial derivatives in respect 
with the coefficient bj equal to 0, which trans-
forms the minimization problem 2 in the set of 
equations 3:
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Dividing equation 4 by n it results:
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which proves that the “average” point is lo-
cated on the regression line 1.
 Several proofs can be found in the litera-
ture for the inequality between the arithmetic 
mean and geometric mean (Cauchy 1821, Hall 
& Knight 2005), some very simple, but based 
on fundamental observations (as the one that it 
will be produced in the following paragraph), 
while other more elaborated, such as the one 
produced by Polya (Steele 2004).
 One of the simplest proofs of the inequal-
ity between the arithmetic mean and geomet-
ric mean is based on the observation that the 
two means supply different results when two 
values are involved in the computations. Spe-
cifically, if arithmetic and geometric mean of n 
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values are 1
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for the latter, then 
by selecting any 
two values xi, xj, 
such that xi ≠ xj, and 
replacing them in 
each mean with their 
arithmetic mean, 
namely xi, xj are 
substitute with (xi + xj)/2 the arithmetic mean 
will not change, while the geometric mean will 
increase. The proof of this observation is obvi-
ous for the arithmetic mean, while for geomet-
ric mean one can observe that by replacing xi 
and xj with their arithmetic mean, the geomet-
ric mean becomes
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The two geometric means differs only by the ith 
and jth term, which leads to xixj for the former 

and to 
2
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As it can be concluded that the latter geomet-
ric mean is larger or equal than the former, as 
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 Therefore, the geometric mean will be the 
largest when all the terms are equal, while the 
arithmetic mean remains unchanged regardless 
the linear changes of the values used in com-
putations. If the value of each term in the geo-
metric mean is the arithmetic mean, then the 

geometric mean will be the largest among all 
combinations of xs from the arithmetic mean. 
Formally, the relationship between the geo-
metric mean and arithmetic mean is expressed 
as                                            

Finally, the third step in proving the bias of 
models developed from linear regression on 
log(y) consists in relating the estimates sup-
plied by LS method for the transformed and un-
transformed y. According to equation 5 the re-
gression line passes to the point of coordinates

( , )y x , which for the logarithmic transformed 

y implies that log( )y  is on the regression line. 
As the objective of the modeling exercise is 
to produce equations for the untransformed 
variable y, the antilog is taken from the esti-

mates, namely log( ) ( ) exp( ( ))y f y f x  x  
if the base of the logarithmic transformation is 

e. Considering that log( )y  is on the regres-
sion line, the untransformed y corresponding 

to log( )y  is:
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Bivariate normal distribution of errors for a multiple linear regression equation with two predictor 
variables

Figure 1 
x1 axis
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 Equation 7 shows that transformation of the 
logarithmic y in the original units is associated 

with a bias of arithmetic geometricδ μ μ  , 
as back-transformation line does not contains 
the arithmetic mean. The arguments presented 
until this point does not bring any element of 
novelty to the scientific body of knowledge, 
just illustrates in the same argument the com-
plete proof of the bias resulted from the trans-
formation of the dependent variable. 

Method of correcting bias of the log-trans-
formed dependent variable using generated 
data

The purpose of the logarithmic transforma-
tion of the dependent variable is to translate 
the nonlinear relationship between variables in 
a linear relationship. It is not the objective of 

this paper to assess the significance of the re-
lationship between variables, as it is assumed 
that all assumptions associated with linear re-
gression analysis are fulfilled, such as residu-
als are normally distributed and have the same 
variance, irrespective the predictor variable x 
(Fig. 1). Explicitly, it is assumed that for each 
x the residuals are normally distributed with 
mean  and variance 2σ (Montgomery et al. 
2006). 
 In absence of original data, one does not 
h a v e      knowledge of each observation, 
pos i - bly only summary statistics, 
namely mean, variance, range and number of 
observations. One can consider correcting the 
bias induced by the logarithmic transforma-
tion by replacing the original data with gen-
erated data that fulfills the same distributional 
assumptions as original data. Consequently, 
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one could generate residuals that are normal-

ly distributed 2(0, )N σ residuals that will be 
subsequently used to compute the difference 
between arithmetic mean and geometric mean, 
hence the bias. Random data generation has 
the advantage that is simple to implement re-
gardless the number of independent variables, 
but is associated with two major issues: 1) 
data generated by different software are not 
random but pseudorandom, 2) generation of 
large amount of data can impose challenges 
to the subsequent data analysis. Therefore, 
one should determine how many values will 
be generated, such that the analysis will not 
be difficult or impossible, and should choose 
a methodology that reduces the chance of pro-
ducing values that are not random. To select 
the number of values that should be generated 
for each x, one can use as an upper bound the 
value recommended by Liew et al (1985), and 
reduced, if possible, to a number that will pro-
duced insignificant changes in the resulted val-
ues, while not impeding the analysis by size. 
The approach used here to identify a thresh-
old that ensures both requirements (i.e., insig-
nificant difference between true and generated 
mean, and lack of computational issues) was 
simulation, in the sense that a set of values of 
size nx, nx ≥ 2, were selected from a normally 
distributed random variables with mean μ and 
variance σ2. The generation of the sample was 
performed using SAS 9.3 (SAS Institute 2010), 
four normal distributions means (i.e., 5, 10, 15, 
20), and a unit variance (i.e., σ2 = 1). The four 
means were chose such that the generated pos-
itive values (a requirement in the computation 
of the geometric mean) can be used to assess 
whether or not the samples size is depended on 
the magnitude of the values. The unit variance 
was chosen in conjunction with the mean (i.e., 
from 5 times smaller to 20 times smaller), such 
that the generated values will likely not be 
negative, considering that probability of gen-
erating a value smaller than -5 or larger, from 
a normal distribution with mean 5 or larger, 
and variance 1, is less than 10-4 (Feller 1968). 

The maximum sample size was selected to be 
100, similar to Liew et al (1985), as commonly 
regression based models are developed from 
more than 100 measurements or observations. 
An upper limit of 100 was chosen to avoid pos-
sible computational issues, as more than 10000 
values will be used in computations. In the 
case of multiple predictor variables the com-
plexity of the problem is exponential in nature, 
which recommends less than 100 values to be 
used to assess the difference between arithme-
tic and geometric mean (McClave & Dietrich 
1991, Tran 1997). An additional complication 
associated with multiple predictor variables is 
the possible existence of a significant correla-
tion between the variables, which invalidates 
a factorial approach to the generated data ap-
proach. In absence of correlation between pre-
dictor variables, for each combination of xs 
the same number of values will be generated; 
for example if height is predicted as a function 
of site productivity and age the same number 
of values will be generated for all age – site 
productivity combinations, which can lead to 
more than 1800 combinations (i.e., 60 ages x 
30 site productivities). However, when correla-
tion between predictor variables is present (for 
instance the standard volume equations (Husch 
et al. 2002) that include diameter at breast 
height (dbh) and height as predictor variables), 
and extra conditioning should be included in 
the data generation process. For correlated 
variables, the linear equation quantifying the 
relationship between variables could be used 
to generate the number of values to be used 
in bias correction. However, as the residuals 
of the logarithmic transformed variables are 
multi-normal distributed the most values are 
located on the regression line, which precludes 
the usage of a factorial approach for possible 
combinations of predictor variables. A possi-
ble solution to the unbalanced repartition of 
values across combinations of predictor vari-
ables is to generate values decreasing from the 

presets xs for which ˆ( )f yx (i.e., the regres-
sion line) to xs that lead to f(x) multi-normal 
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distributed around ŷ . As approximately 95% 
of the observations are located at two stand-

ard deviation from ŷ (Grimmett & Stirzaker 
2002), one can use in determining the set of xs 
for which values will be generated, a discrete 
set that contains values situated at most two 
root mean square errors from the predicated 
value (Neter et al. 1996). To avoid bias results 
induced by a balanced number of values across 
the set of identified xs, data generation will 
produce less values for combinations of xs that 

supplies ŷ two root mean square errors from 
the regression line than for combination of xs 

that supplies ŷ on the regression line. Howev-
er, the smallest number of values generated has 

to be at least the number of values identified 
as providing arithmetic and geometric means 
unaffected by the size of the data generation. 
Consequently, the bias adjustment for multiple 
linear regressions with transformed dependent 
variable requires generation of more values 
than the minimum number of values for which 
the two means do not change significantly.
 As data are generated, one can question 
whether or not the arithmetic mean and geo-
metric mean will converge to the same value, 
which will render data generation approach as 
a biased procedure. Eq. 6 proves that geomet-
ric mean is smaller than arithmetic mean for 
more than two different values used in compu-
tations; consequently the lack of convergence 
to the same value of the two means. For finite 
number of bounded values, the arithmetic and 
geometric means are finite, as proven by Kol-
mogorv & Fomin (1999), which shows that the 
two means are between the smallest and the 

largest value.
 Determination of the arithmetic and geomet-
ric mean from generated data is justified by the 
violation of the linear property of the arithme-
tic mean. The violation is found not only in the 
lack of equivalence between the two means, 
which operates basically on two different 
spaces, one on L1 and one on L2 (Grimmett & 
Stirzaker 2002), but also at distributions level, 
as one has normal residuals while the other 
has log-normal residuals. While violation of 
distributional assumptions were extensively 
addressed in the presence or absence of data 
(Aitchison & Brown 1957), the linearity vio-
lation was not studied in the absence of data. 
Formally, the breach of linearity is induced by 
the assumption that inversion function is a lin-
ear operator, which can be expressed as: 

  

 
 

Eq. 8 shows that the value predicted by f(x), 
which is on the regression line, is also the mean 
of the normal distribution of the residuals lo-
cated at x (Montgomery et al. 2006, Neter et al. 

1996). The fact that ˆln( )y is situated on f(x) is at 
the center of the proposed correction for bias

arithmetic geometricδ μ μ  , which is based 

on generated data. As generation of normally 
distributed data was dependent not only on the 
mean (i.e., f(x)) but also on the variance, one 
should compute the variance of the residuals 
from the summary statistics based on the origi-
nal data. Montgomery et al (2006) proved the 
additive property of the sum of squares, from 
which can be deducted that variance of the 
residuals, also known as mean square error, 
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as 2
ln( )y

σ is constant and independent of 
number of measured or observed data

2
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where n is the total number of generated data, 
and k is number predictor variables

ln( )

2
yεσ is the variance of the residuals of the 

linear regression, ln( ) ˆy y yε  

2
ln( )yσ is the variance of the logarithmic 

transformed data 2
ln( )y

σ is the variance of the 
regression line.
 In a large number of situations only the 
regression equation is presented, and both 
original data and summary statistics are no 
longer available (Bennett et al. 1959, Clut-
ter et al. 1983, Giurgiu 1979). In this situ-

ation, information regarding variance can be 
obtained from the Chebyshev’s theorem (Grim-
mett and Stirzaker 2002), which proved that 
for symmetric unimodal  distribution, standard 
deviation can be determined from range, us-
ing the formula σ = range/6, as proved by Mc-
Clave and Dietrich (1991). Range, in this case, 
can be determined either from the asymptotic 
behavior of the regression equation (Clutter 
et al. 1983), if the asymptote does exists, or 
from the charts that traditionally accompany 
the regression equations in the past (Avery & 
Burkhart 2001, Bennett et al. 1959; Bettinger 
et al. 2009, Husch et al. 2002). 
 Knowledge of the variance of the residuals 
allows the generation of a set of ln(y) values 
that are normally distributed with mean f(x) 

and variance
ln( )

2
yεσ  for each x. To avoid the as-

sumption of linearity when it is not true, each 
generated data will be back-transformed in y’s 

Flowchart outlying the succession of steps needed to correct bias using generated dataFigure 2 

Identify equation and variance of original data 

Compute variance of ln(y) using eq. 9 

Generate a set of values that are normally distributed, with mean f(x) and variance 2
ln(y)

Compute exp(f(x)+ ln(y)) for all generated values  

Compute the arithmetic mean of  exp(f(x)+ ln(y)) for every x
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original units, and subsequently the arithmetic 
mean of back-transformed values will be com-
puted. This procedure adjusts for bias the pre-
dicted y = ef(x), as avoids the equivalence issue 

proven by Eq. 8 ( ln lny y ), and incorporates 
the difference between the geometric mean 
and arithmetic mean.  The series of steps that 
correct for bias using generated data and pre-
sented above is summarized in the flowchart 
from Fig. 2.
 Random data generation can require a large 
amount of values to ensure the desired estima-
tion properties, as proven by Cochran (1977). 
For small sample sizes there is the possibility 
that the results would contradict the original 
data, as the resulted equation will have various 
derivatives, namely both positive and nega-
tive. In eventuality that random data genera-
tion requires a large number of values, then 

the corrections for bias proposed by Basker-
ville (1972), Sprugel (1983), or Beauchamp 
and Olson (1973) can be used. The correction 
basically adjusts the estimates provided by the 
back transformation from logarithmic units to 
original units according to first order moment 
of the lognormal distribution:

2
ln( )( ) 0.5 yfy e εσ


x

x
            
 If a logarithmic transformation uses a differ-
ent base than e, then the correction proposed 
by Sprugel become:

2
og ( )0.5 ln ( )l ya

a fy e aεσ 
 x

x         
where loga(y) resents the logarithm of y in a, 
a > 0.

  The approaches that correct bias only using 
expectation differ from two fundamental per-
spectives: one uses a constant correction fac-
tor, irrespective the predictor variable (Sprugel 
1983), and one uses a correction that depends 
on the predictor variable (Beauchamp & Ol-
son 1973). Here, only the approach proposed 
by Sprugel is shown, for consistency, as Beau-
champ and Olson, developed their method only 
for simple linear regression, and this research 
presents corrections for multiple linear regres-
sion (Giurgiu 1979). 
 The change in distribution from normal to 
lognormal is not the focus of the present re-
search, as corrections for the transformation 
of the depended variable were presented ex-
tensively in the literature in the last 50 years 
(Aitchison & Brown 1957). Formally, the dis-
tributional change is expressed as: 

  

One of the objectives of the article is to illus-
trate two procedures available to correct bias 
of lognormal regression models: 1) one using 
data generation, 2) one based on moment es-
timations. The procedures are presented using 
two types of regression equations, whose pres-
ence is ubiquitous in forestry: 1) a simple lin-
ear regression, namely the guiding curve site 
index equation for slash pine (Pinus elliottii 
E.) developed by Clutter et al. (1983)  based 
on Schumacher and Hall (1933) approach, 2) 
a multiple linear regression, namely the vol-
ume equation developed by Giurgiu (1979) for 
Norway spruce (Picea abies L). The bias was 
corrected using information on original data 
(e.g., summary statistics or graphs) and the 
final regression line. The site index equation 
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presented in this paper was initially developed 
by Bennett et al (1959), and subsequently ad-
justed by Clutter et al (1983), is : 

ln(height) = b0 + b1age-1 .                          (12) 
         
 The two coefficients, determined using mea-
surements executed in imperial units, are: b0 
= 4.6646 and b1 = -12.4486. The coefficients 
were not converted to international units as the 
focus of the article is not the equation but the 
technique. 
 The tree volume equation developed by Gi-
urgiu (1979) is:

log(volume) = b0 + b1 
. log(dbh) +  b2 

. log2(dbh) 
+ b3 

. log (heigt) + b4 
. log2(height)            (13)

                                                           
where b0= -4.0239, b1= 1.9341, b2= -0.0722, 
b3= 0.6365, b4 = 0.1720, and the base of the 
logarithm is 10.

Results

The proposed procedure for correcting bias 

of log-transformed variable requires aprioric 
knowledge of the number of values to be gen-
erated. To identify the needed number of val-
ues, the simulation process using less than 100 
values for each x and four arithmetic means, 
revealed significant variation for both means 
when less than 10 values are used in computa-
tion, but exhibit a significant reduction in vari-
ability for more than 20 values (Fig 3). There-
fore, for each x 20 values will be randomly 
generated.
 The site index equation (12) used as an ex-
ample, has an asymptote at 106 feet (i.e., 32.31 
m). However, for slash pine plantations the ro-
tation age is seldom larger than 50 years, as re-
corded by Zarnoch & Feduccia (1984), and in-
dicated by Carmean et al (1989), who draw site 
index curves based on Bennett et al (1959) data 
for ages less than 25 years. Therefore, it can 
be assumed that Bennett et all (1959) recorded 
stands with height of dominant trees at most 
65 feet (i.e., 19.81 m). Carmean et al. (1989) 
showed that the minimum age for which data 
were collected is 10 years, indicating that the 
smallest height is 30 feet (i.e. 9.144 m). Con-
sequently, the range of the original data was 

Flowchart outlying the succession of steps needed to correct bias using generated dataFigure 3 
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probably 35 feet (i.e., 10.67 m), which leads 
to a standard deviation of the logarithmic data 

of 0.128 ln(65) ln(30). .
6

i e  
 
 

, and a variance of 

ln( )

2 0.0166
yεσ   (according to Eq. 9). 

 The generated data for the linear regres-
sion line using 20 values produced values that 
had both means changing unrealistically with 
age, in the sense that larger ages have smaller 
heights. This non-monotonic behavior (Rudin 
1987) of the random generated data is not con-
sistent with the growth and yield processes and 
requires additional investigation. As the law of 
large number, which is at the foundation of the 
estimation process, requires a large number of 
values, the solution to the unrealistic temporal 
variation was to increase the number of gen-
erated heights from 20/year to 5000/year. The 
5000 values/year were selected following the 
same procedure that recommended the 20 val-
ues/year, but constrained not only to insignifi-
cant changes in the means but also to insignifi-
cant differences between the expected mean 

and computed mean. The large dataset built 
using 5000 values/year (i.e., 80 000 records) 
showed a possible representation of the origi-
nal data that were used to develop the site in-
dex guiding curve. The bias correction com-
puted using the generated data is consistently 
larger than the uncorrected guiding curve, as 
expected according to Eq. 7, confirming the 
bias induced by the log-transformation (Beau-
champ and Olson 1973). To correct for bias 
Eq. 12 using the correction factor proposed by 
Sprugel (1983), one can multiply all the values 

with the 
2
ln( )0.5 ye εσ

, which is 1.0083. Therefore, 
the Eq. 12 is

4.6729 12.4486/ageheight e 

instead of
4.6646 12.4486/ageheight e              (14)

 The bias determined using Sprugel’s ap-
proach for the site index Eq. (12) is less than 
1% (i.e., 0.823%).
 The correction proposed by Sprugel (1983), 

Slash pine (Pinus elliottii E.) guiding curve statistics for corrected and uncorrected for bias 
values   

Table 1 

Age Uncorrected height 
(Clutter et al 1983)

Corrected height 
(Sprugel 1983)

Corrected height 
(generated data)

Variance of generated 
heights (original units)

10 30.56 30.82 30.56 0.063
11 34.22 34.51 34.23 0.081
12 37.61 37.92 37.61 0.097
13 40.73 41.07 40.73 0.113
14 43.62 43.98 43.60 0.133
15 46.28 46.66 46.28 0.15
16 48.74 49.15 48.75 0.159
17 51.03 51.45 51.03 0.177
18 53.14 53.59 53.14 0.196
19 55.11 55.57 55.12 0.213
20 56.95 57.42 56.96 0.212
21 58.66 59.15 58.67 0.237
22 60.27 60.77 60.27 0.249
23 61.77 62.28 61.77 0.264
24 63.18 63.70 63.16 0.275
25 64.50 65.03 64.50 0.285
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is comparable with the values obtained from 
generated data (Table 1), indicating that both 
procedures could be successfully used to cor-
rect bias of logarithmic transformed variables. 
The generated data approach has the advantage 
that provides information on variance change 
along regression curve, which increases with 
age (Table 1). 
 

Based on the findings from the guiding curve 
equation, the multivariable equation of Giur-
giu (1979) should be corrected using 5000 
values/dbh-height combination. However, for 

simplicity only the correction proposed by 
Sprugel is presented in this paper, as the re-
sults for simple linear regression indicated 
the consistency between the values obtained 
using generating data and Sprugel (1983) ap-
proach. According to Giurgiu et al (1972), 
the range of the original data is 12.453 (i.e., 

Impact of height and DBH on Norway spruce stem volume (corrected and uncorrected for bias)  
computed using Giurgiu (1979) equation  for trees with DBH between 20-60 cm and four heights 
(i.e., 15 m, 20 m, 25m, 30 m)

Figure 4 
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from 0.003 to 12.456), and according to Eq. 9 
the range for the logarithmic volume is 3.618 
[i.e., log(12.456) - log(0.003)], which renders 
a standard deviation of 0.603 and a variance 
of 0.3636. Consequently, Sprugel’s correction 
factor is  

2
log( )0.5 2.303 0.18181.5198 10ye εσ 

  , which 
should be used to multiply all the volumes ob-
tained using the equation:

Finally, the corrected Giurgiu’s equation for 
the individual tree volume of Norway spruce 
is:

The bias determined using Sprugel’s approach 
for the Norway spruce stem volume equation 
of Giurgiu (1979) is 34.2% = (1 - 10-0.1818).

4.0239 1.9341 0.0722log( ) 0.6365 0.172log( )10 dbh heightvolume dbh height

3.8421 1.9341 0.0722log( ) 0.6365 0.172log( )10 dbh heightvolume dbh height (15)
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Discussion

The common belief that significant results 
can be obtained based on a reduced amount 
of generated data proved not to be supported 
by the results. In contrary, it seems that a large 
amount of data has to be generated to ensure 
the achievement of the convergence properties, 
as stated by the laws of large numbers (Grim-
mett & Stirzaker 2002). The present results 
suggest that 5000 values for each x leads to 
the expected results, while data generated with 
less than 100 values/x does not necessarily 
produces the anticipated results. The require-
ment of large amount of data can create dif-
ficulties in analysis and increases the chance 
of computational errors. When the regression 
model contains several uncorrelated predictor 
variables that operates on a fine range of val-
ues (e.g., three predictor variables each with 
100 values), the generated data produces more 
than 10 billion records. Consequently, the ap-
proach for bias correction based on data gener-
ation (Fig 2) encounters difficulties for models 
with multiple variables, which limit its general 
applicability. The results support this approach 
only for simple linear regression, situation on 
which the proposed procedure is justified, as it 
supplies not only unbiased estimates but also 
a measure of the variability existing in the 
original data. For multiple linear regressions 
with logarithmic dependent variable the cor-
rection proposed by Sprugel (1983), should 
be used, even that no information on the vari-
ability of the estimates would be available. 
However, the simplicity of Sprugel’s approach 
recommends its implementation in these situ-
ations. Furthermore, Sprugel’s correction 
changes only the intercept, as the coefficients 
of the predictor variables remain the same.
 The correction for bias of models developed 
by linearising a relationship using the loga-
rithmic function is required from two perspec-
tives: 1) it does produces the correct results, 
even that sometimes from operational perspec-
tive the correction is insignificant [the case of 

site index equation of Clutter et al. (1983)], 
and 2) can lead to significant changes in esti-
mated values [the case of Norway spruce stem 
volume equation of Giurgiu (1979)]. However, 
even for smaller biases, the correction increas-
es with the magnitude of the predicted value, 
therefore on absolute scale it accretes to large 
values. 
 The bias magnitude for Giurgiu (1979) equa-
tion raises questions on the practical applica-
tion of the equation, as underestimates of more 
than a 1/3 of the actual volume is reflected in 
large financial losses from both finite products 
perspective (i.e., seller of the raw material 
receives a reduced amount) as well as from 
management perspective (i.e., larger volumes 
leads to an earlier peak of the mean annual in-
crement, consequently a shorter rotation age). 
However, the large bias is likely not induced by 
an inappropriate implementation of the double 
logarithmic equation, but possibly the results 
of the lack of data. As stem volume covers a 
large range of values, many under 1 m3, the 
logarithmic transformation, especially base 10, 
lead to large negative values, as log10(0.001) = 
-3. In the case of forest operators that harvest 
and sell wood fiber harvested from more than 
1000 ha/year, the losses induced by the bias as-
sociated with Giurgiu (1979) equation can be 
more than 0.4 m3/stem (Fig. 4), an estimated 
value of at least $1,000,000/year. 
 The case of Giurgiu’s equation is emblem-
atic for the situations on which the results are 
further inputted in other models, for example 
the development of stand and stock tables. 
In these situations, the bias can cumulates to 
produce results that are no longer defendable 
scientifically, operationally, as well as legally. 
Consequently, the correction for bias should be 
executed irrespective the magnitude of the cor-
rection, to avoid any subsequent errors, which 
can lead to chaotic models of the behavior of 
the managed forests (May 1977).
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Conclusions

The logarithmic transformation of the depend-
ent variables for models developed using re-
gression analysis induces bias that should 
be corrected, regardless its magnitude. The 
simplest correction for bias was proposed by 
Sprugel (1983), which basically multiplies the 
back-transformed estimates with the constant 

value of 
2
ln( )0.5 ye εσ . While this correction is fast 

and easy to implement does not supplies esti-
mates of the variability existing in the original 
data. Consequently, a procedure based on gen-
erated data was developed to provide unbiased 
estimates for both attribute of interest and vari-
ability existing along the model. The procedure 
reveals that valid estimates can be obtained 
if large number of values is generated (e.g., 
5000 values/x).  The procedures supplies ac-
curate estimates for the attribute of interest and 
its variability, but encounters significant data 
processing difficulties for models with more 
than one predictor variable. Nevertheless, ir-
respective the number of predictor of variables 
and magnitude of the correction factor com-
puted by Sprugel, the estimates determined 
using logarithmic transformations should be 
corrected for bias, to avoid cumulated errors or 
chaotic effects associated with nonlinear mod-
els. The correction for bias can be executed us-
ing either the proposed data generation proce-
dure or Sprugel’s correction factor, depending 
on the complexity of the model.
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