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Abstract The parameters of the probability density function (PDF) may 
be estimated using the parameter prediction method (PPM) and the 
parameter recovery method (PRM). However, these methods can suffer 
from accuracy issues. We developed and evaluated the prediction accuracy 
of two PPMs (stepwise regression model and dummy variable model) and 
an artificial neural network (ANN) to predict diameter distribution using 
data collected from 188 oak forest plots. The results demonstrated that the 
Weibull distribution performed well in fitting the diameter distribution. 
Compared with the stepwise regression model, the PPM model with stand 
type as a dummy variable reduced the predictional errors in estimating the 
parameters b and c of the Weibull distribution, but the prediction accuracy 
of the diameter distribution showed no significant improvement. Compared 
with the two PPM models, the ANN model with diameter class (C), average 
diameter (D) and stand type (T) as input variables decreased the RRMSE 
by 2.9% and 4.33% in estimating diameter distribution, respectively. The 
satisfactory prediction accuracy and simple model structure indicated that 
an ANN worked well for the prediction of the diameter distribution with few 
requirements and high practicality.
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Introduction

Oak trees are one of the dominant species found 
in the broad-leaved forests of subtropical, 
tropical and temperate regions (Nixon 1993, 
Perea et al. 2017). The 8th Chinese National 
Forest Inventory indicates that the total area of 
oak trees in China has reached 16.72 million 
hectares. The area and volume of oak trees 
account for 10.15% and 12.94%, respectively, 
of China’s forests (Li et al. 2001, Wang et al. 
2019). However, oak forests in China face 
quality problems related to excessive stand 
density and low growth rates. At present, 
the average volume of oak forests in China 
is approximately 77.39 m3∙ha-1, whereas in 
Germany it is 305 m3∙ha-1 (Hou et al. 2017). 
Therefore, understanding the stand structure, 
growth prediction and management of oak 
forests is particularly significant and urgent.
 The diameter distribution refers to the 
number of trees within a certain diameter 
range at breast height (1.3 m height) (Hafley 
& Schreuder 1977). This measure is not only 
a basis for stand height, basal area and volume 
but is also a precondition for afforestation 
design (Meyer 1952, Leak 1964), the forest 
succession process (Goelz & Leduc 2002) and 
growing and harvesting models (Clutter et al. 
1984, Borders & Pattreson 1990). At present, 
diameter distribution is mainly studied in 
reference to even-aged forests with few studies 
focusing on uneven-aged forests because 
uneven-aged forests are complex and diverse.
 The study of the diameter distribution is 
mainly based on the PDF and on theoretical 
models. Related research has progressed from 
a fouce on static to dynamic methods. Static 
simulation methods simulate the pattern of 
stand distribution with PDFs such as normal, 
negative exponential, Johnson’s SB (Johnson 
1949), beta (Clutter & Bennett 1965), gamma 
(Nelson 1964), and Weibull distribution 
(Weibull 1951, Bailey & Dell 1973, Cao 
2004). For natural forests, static simulations 
have been widely used to study the diameter 

distribution. Many studies have shown that 
the Weibull function has the advantages of 
a flexible curve and simple mathematical 
operation among these PDFs (Lima et al. 2015, 
Quiñonez-Barraza et al. 2015). Bailey and Dell 
(1973) discussed the application of the Weibull 
function to diameter distribution studies, and 
the results from comparing available diameter 
distribution models show that no model could 
reveal the characteristics or the Weibull model. 
At present, the Weibull model has been widely 
used to describe the diameter distribution of 
Pinus taeda (Smalley & Bailey 1974, Lee & 
Coble 2006), Eucalyptus robusta (Miranda 
et al. 2018, Souza Retslaff et al. 2012, Binoti 
et al. 2010), Pinus palustris (Jiang & Brooks 
2009), oak mixed forests (Sun et al. 2019, 
Carretero & Torres Alvarez 2013) and other 
mixed tree species (Lima et al. 2015, Coomes 
& Allen 2007). However, some researchers 
have reached different conclusions. Podlaski 
& Zasada (2008) found that the diameter 
distribution of a single-layer stand could be 
best simulated by the normal and logistic 
distributions, and the Weibull distribution 
and gamma distribution models were most 
suitable for the straight-diameter distribution 
of multilayer stands in fir and birch mixed 
forests. Kayes et al. (2012) found that both 
the lognormal distribution and Weibull 
distribution show the same applicability in 
describing the diameter distribution of Acacia 
auriculiformis. Mønness (1982) also found 
that the SB distribution is more suitable than 
the Weibull distribution in describing the 
diameter distribution of Pinus sylvestris. Thus, 
the applicability of the diameter distribution 
function may vary depending on tree species 
or stand structure.
 The dynamic prediction of the stand diameter 
distribution mainly refers to the estimation of 
model parameters by the PPM (Hyink & Moser 
1983, Siipilehto 1999), PRM (Bowling et al. 
1989, Lindsay et al. 1996, Schütz & Rosset 
2020) and percentile approach (Brooks et al. 
1992, Pérez-López et al. 2019). At present, the 
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PPM is commonly used (Little 1983, Kilkki 
et al. 1989). The parameters of the diameter 
distribution model for a new stand can be 
estimated using the PPM by constructing a 
functional relationship between the parameters 
of the distribution model and the stand 
variables (average diameter at breast height 
(DBH), average tree height, cross-sectional 
area, etc.) (Siipilehto 1999). The PPM can 
greatly reduce the costs required for forestry 
measurements, but it suffers from low levels 
of predictive accuracy (Álvarez-González et 
al. 2002). Fortunately, a model with dummy 
variables can improve prediction accuracy 
by adding virtual stand-related variables 
(Pogoda et al. 2019). Dummy variable models 
have been widely used in regression analysis 
and modelling due to their high modelling 
accuracy (McCrohan & Harvey et al. 1989, 
Wang et al. 2008, Chen et al. 2017). Therefore, 
the application of a dummy variable model for 
the prediction of parameters for the diameter 
distribution model may be feasible.
 The diameter distribution may not be 
characterized accurately in terms of the PDFs 
due to its complex nonlinear relationship 
(Huang 2000). For nonlinear problems, an ANN 
can approximate any type of arbitrary nonlinear 
function due to its intrinsic properties. Thus, 
an ANN may offer a new avenue for diameter 
distribution modelling. Compared to other 
pattern recognition tools, ANNs have some 
advantages, such as robustness and tolerance 
of noise (Samarasinghe 2006, Gurney 1997). 
ANNs have recently attracted considerable 
attention as a promising alternative for 
predicting the behaviour of complex, 
nonlinear systems (Dande & Samant 2018). At 
present, ANNs have been successfully applied 
in forestry for the estimation of tree height 
(Özçelik et al. 2013), the prediction of volume 
(Diamantopoulou 2005, Ashraf et al. 2013) 
and the prediction of other forest attributes 
(Corne et al. 2004). ANNs have been used 
for diameter distribution modelling, but such 
studies have focused on using ANNs to predict 

the parameters of the PDF (Abbasi et al. 2008, 
Cai et al. 2010). However, few studies are 
available on the use of ANNs to directly fit and 
predict the stand diameter distribution.
Thus, the main purpose of this study was to 
use an ANN to predict the stand diameter 
distribution. This study 1) selected the 
most suitable distribution function from six 
models to fit the diameter distribution of oak 
secondary forest; 2) compared the fitting 
effects of the conventional stepwise regression 
method and dummy variable method in 
parameter prediction; 3) constructed a 
diameter distribution prediction model using 
ANN based on stand variables; and 4) selected 
the most suitable diameter distribution 
prediction model by evaluating the predictive 
performance of the stepwise regression model, 
dummy variable model and ANN model.

Materials and Methods

Study site

The study site is located in Hunan Province of 
southern China at longitudes and latitudes ranging 
from 108°47  ́~ 114°15  ́E and 24°38  ́~ 30°08´ N, 
respectively (Figure 1). The study area has an 
elevation range of 24 ~ 2122 m and contains 
complex landforms, including hills, flatlands, 
and mountains. The mean annual temperature 
is 15 ~ 18°C, and the mean annual precipitation 
reaches 1200 ~ 1700 mm. The soil in the study 
area mainly includes red soil (Ultisols, US soil 
taxonomy) and yellow soil (Acrustox, US soil 
taxonomy) with a small amount of calcareous soil 
(Alfisols US soil taxonomy). Oak is a dominant 
species in the broad-leaved forests of Hunan 
Province. The oak forest can be partitioned into 
three stand types: pure oak forest, oak-coniferous 
mixed forest and oak-broad-leaved mixed forest. 
The main conifer species are Pinus massoniana 
and Cunninghamia lanceolata. The main broad-
leaved species are Cinnamomum camphora, 
Liquidambar formosana, and Carpinus 
turczaninowii.
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Table 1 Descriptive statistics for modelling and validation data.

Data Variables Mean Min Max SD

Modelling data (133 plots)

Mean DBH (cm) 10.26 6.67 22.52 2.69 

Basal area (m2/667m2) 1.245 0.222 4.408 0.656 

Trees per hectare (trees·ha-1) 1833 795 4275 603 

Validation data (55 plots)

Mean DBH (cm) 10.96 5.83 22.55 3.05 
Basal area (m2/667m2) 1.301 0.139 3.733 0.704 

Trees per hectare (trees·ha-1) 1655 765 3000 484 

Note: Max: maximum; Min: minimum; SD: standard deviation

Figure 1 The location of the study area – Hunan – with the spatial distribution of sample plots.

Data

After statistical analysis and data collation, 
22323 observations from 188 sample plots 
were selected. The predominant tree species of 
the plots were oak, conifer species and broad-
leaved species. Sample plots were surveyed 
in 2004 and 2014, and their size was 25.82 x 
25.82 m. The number of trees per hectare for 
each plot exceeded 750, and the oak species 
accounted for more than 30%. Within each 
plot, the DBH was measured, the basal area 

and trees per hectare were computed, and tree 
species, elevation, slope, aspect, slope position 
and soil were recorded. DBH was measured 
using a diameter tape. Plot elevation and 
slope position were measured using a global 
positioning system. The dataset was randomly 
split into two parts: 70% (133 plots) for 
modelling and 30% (55 plots) for validation. 
The modelling and verification sample plots 
are shown in Table 1.
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Parameter prediction model

The parameter prediction model constructs the 
functional relationship between stand variables 
and parameters to predict the diameter distribution 
parameter of a new stand. Six common diameter 
distribution functions were developed and 
compared to fit the diameter distribution of 
oak forest. The specific expressions of the six 

functions are shown in Table 2.
 The percentile procedure was used to 
estimate the parameters of the logistic 
distribution function (Zankis 1979). Moment 
estimation (García 1981) was used to estimate 
the parameters of the other five distribution 
functions. The Kolmogorov-Smirnov (KS) 
test was used to test the distribution type of the 
sample (Little 1983).

Table 2 Expression of the diameter distribution functions.

   Name      Expression

Description f(x) is the frequency of diameter class, x is the diameter class, μ is the mathematical expectation, σ is the 
standard deviation, a, b and c are the model coefficients.

Stepwise regression model

At present, the stepwise regression method 
is commonly used to construct the parameter 
prediction model. In this study, the parameter 
of the distribution function was fitted as 
the dependent variable, and the alternative 
stand variables included average diameter 
(D), diameter squared (D2), basal area (BA) 
and number of trees per hectare (N) as the 
independent variables. The stepwise regression 

model was constructed as follows:

y=φ0+φ1D+φ2D
2+φ3BA+φ4N                          (1)

where y is the dependent variable, φ0 is the 
intercept, and φ1-φ4 are model coefficients.
 The independent variables were selected 
based on stepwise regression. We allowed 
variables with variance inflation factors less 
than 10 and significant influence to enter the 
model to avoid serious collinearity problems 
between independent variables.
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Dummy variable model

The growth of trees may vary among different 
forest types (Oettel et al. 2020). After data 
collation, we partitioned the oak forest 
stands into three types: pure oak forest (T1), 
oak-coniferous mixed forest (T2) and oak-
broad-leaved mixed forest (T2). The average 
diameter and trees per hectare of the three stand 
types were analysed by one-way completely 
randomized analysis of variance using IBM 
SPSS Statistic 24 software. The average 
diameters of the stand types were ranked 
as T1 > T2 > T3 (Figure 2a), and significant 
differences were found among the average 
diameters of the three stand types (p<0.05). 
This result indicates that the stand type had 
a significant effect on DBH. The numbers 
of trees per hectare in the stand types were 
ranked as T1 > T2 > T3 (Figure 2b), and there 
were significant differences in the number of 
trees per hectare among the three stand types 
(p<0.05). This result indicates that the stand 
type had a significant effect on the stand 
density. Therefore, in this paper, stand type 
was introduced into the stepwise regression 

model as a dummy variable. 
 A dummy model is a model that includes 
dummy variables to address qualitative factors 
or classified variables (Lee 1974, Dorsett & 
Webster 1983). When the dummy variable was 
added to model (1), the model expression was 
as follows:

yi=φ0+φ1D+φ2D2+φ3BA+φ4N+∑φj*rj                      (2)

where φj is a specific parameter of the dummy 
variable and rj is a dummy variable to 
distinguish the three stand types.

ANN model

Construction of the ANN model

An ANN is a popular type of deep learning 
algorithm with three or more hidden layers, 
and each layer consists of a number of 
neuron nodes. An ANN is usually composed 
of an input layer, a hidden layer, and an 
output layer. The number of input layer 
and output layer nodes is equal to the input 
and output vector dimensions, respectively. 
Each node between the two layers has 

Figure 2 Analysis of variance of different stand types for the average DBH and number of trees per 
hectare (T1 denotes pure oak forest, T2 denotes oak-coniferous mixed forest, T3 denotes oak-
broad-leaved mixed forest).
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Figure 3 The topology of the artificial neural network (D, BA and N are the input variables, FD is the output 
variable, w is the weight value, and b is the threshold value).

corresponding weight and threshold values. 
The optimal number ofneurons in the hidden 
layer is determined using the trial-and-error 
method. Some studies have shown that using 
too many hidden layers may lead to overtraining 
and increase the required number of training 
samples (Wekesa et al. 2019, Zhang et al. 2019).
Therefore, a single hidden layer network was 

constructed in this study. That is, a three-layer 
back propagation (BP) network structure with 
one input layer, one hidden layer and one 
output layer was constructed. For example, the 
ANN structure is constructed with D, BA and 
N as input variables and using the frequency 
of the diameter class as the output variable 
(Figure 3).

All neural networks were trained and tested 
using MATLAB 2016b software. The 

corresponding expression of the ANN is as 
follows:

FD=∑(i=1)
s (w1i

2* tansig (wi1
1*rD +wi2

1*rBA +wi3
1*rN+bi

1 ))+b2                                                    (3)

                                                                                                                 (4)

where FD is the normalized value of the 
frequency of the diameter class, wi1

1 is the 
weight from the first node in the input layer to 
neuron i in the hidden layer, w1i

2 is the weight 
from neuron i in the hidden layer to neurons 
in the output layer, bi

1 is the threshold value of 
neuron i in the hidden layer, b2 is the threshold 
value of the output layer, i is the number of 
neurons (i =1, 2…s), tansig() is the transfer 
function, and rD,rBA and rN are the normalized 
values of D, BA and N, respectively.
 The input and output variables are normalized 
to a range of (−1,1) in the Neural Network 
Toolbox of MATLAB 2016b. The normalized 
expression is as follows:

x̂=(x̂max-x̂min)*(x-xmin)/(xmax-xmin)+x̂min                            (5)

 The inverse normalized expression is as 
follows:

x=(x̂-x̂min)*(xmax-xmin)/(x̂max-x̂min)+xmin                             (6)

where x̂ is the data after normalization, x is 
the data before normalization, max is the 
maximum value, min is the minimum value, 
x̂max=1, and x̂min=-1.

Model training

The purpose of the training data was to 
determine a suitable network structure, weight 
matrix and threshold matrix. In the following, 
we describe the training method using D, BA 
and N as input variables and FD as the output 
variable. The datasets were randomly divided 
into training (70% of the data), validation 
(15%), and test (15%) sets. To determine a 
suitable network structure, the number of 
neurons should be optimized with a different 
number of hidden neurons. In the training 
process, the number of neurons was tentatively 
set to 4, 6, 8, 10, 12 and 14. Then, five good 
training results of each neuron were selected 
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after repeated training. The optimal network 
structure was determined by evaluating the 
training results of different neurons.

Evaluation indicator

To evaluate the predictive effect of the model, 
four statistics were computed: the coefficient 
of determination (R2), residual sum of squared 
(RSS), mean squared error (MSE) and relative 
root mean square error (RRMSE). The larger 
the R2 value and the smaller the RSS, MSE and 
RRMSE values are, the better the predictive 
performance is.

where n is the number of observations, yi is the 
observed value, ŷ i is the estimated value, y̅ is 
the mean of the observed value, and k denotes 
the number of parameters.

Results

Comparison of the six distribution 
functions

The goodness of fit of six PDFs was tested 
using one-sample Kolmogorov-Smirnov 
(KS) tests. Table 3 shows the percentages of 
hypothesis acceptance for the 188 sample 
plots. The logistic distribution only gave a 
satisfactory fit for 34 out of 133 sample plots 
(33.3%). For the Weibull distribution, only 
18 out of 133 sample plots (13.5%) failed to 
pass the KS test, showing that the diameter 
distributions followed the Weibull distribution.

Table 3 Results of the test of no difference between 
observed and predicted distributions within 
the 133 sample plots.

PDFs Hypothesis 
rejected

Hypothesis 
accepted

Acceptance 
rate (%)

Normal 93 40 30.1

Logarithmic 
normal

24 109 82.0

Weibull 11 122 91.7
Gamma 18 115 86.5
Beta 32 101 75.9
Logistic 99 34 25.6
Note: criterion = one-sample Kolmogorov-Smirnov test; 
α = 0.05; PDFs is the probability distribution functions

Evaluation and comparison of the two 
parameter prediction models

Stepwise regression model

The significant variables of each Weibull 
parameter model were identified using the 
stepwise regression method (Table 4). BA was 
selected as the independent variable for the 
prediction of parameter a (M1), D was selected 
for the prediction of parameter b (M2), and 
D2 and N were selected for the prediction of 
parameter c (M3). All selected independent 
variables were found to be statistically 
significant, and the variance inflation factors 
(VIFs) were all less than 10, indicating no 
problematic collinearity. The R2 values of M1 
and M2 were only 0.134 and 0.258, respectively, 
but the overall multivariate regression models 
were statistically significant.

Dummy variable model

Stand type T was introduced into the regression 
models as a dummy variable to improve 
predictive performance (Table 5). Compared 
with model M2, the R2 of the dummy variable 
model M5 increased by 0.005, while the 
RRMSE value decreased by 0.83%. Compared 
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Table 5 The fitting results of the dummy variable model using stand type T as a dummy variable.

Model# Parameter
Fixed variable Dummy variable Evaluation index

Int D D2 BA T1 T2 R2 RSS RRMSE

M4 a 4.877* 0.067* 0.134 2.684 2.89

M5 b -5.353* 1.079* -0.363* 0.987 14.305 6.03

M6 c 1.264* 0.001 -0.328* -0.163* 0.392 4.858 16.51

Note: Int is the intercept; D is the average DBH; D2 is the DBH square; BA is the basal area; R2 is the coefficient 
of determination; RSS is the residual sum of squared; RRMSE is the relative root mean square error; symbol * 
indicates that the model parameter is significantly different from zero at the significance level of 0.05; M#: model 
numbers; T1 is the pure oak forest; T2 is the oak-coniferous mixed forest. 

Table 4 Stepwise regression for the prediction of parameters a, b and c.

Model# Parameter
Independent variables Evaluation index

Int D D2 BA N R2 RSS RRMSE(%)

M1 a 4.877* 0.067* 0.134 2.684 2.89

M2 b -5.507* 1.073* 0.983 18.528 6.86

M3 c 0.861* 0.001* 0.9×10-4* 0.258 6.915 19.69

Note: Int is the intercept; D is the average DBH; D2 is the square of DBH; BA is the basal area; N denotes the number of 
trees per hectare; R2 is the coefficient of determination; RSS is the residual sum of squared; RRMSE is the relative 
root mean square error; symbol * indicates that the model parameter is significantly different from zero at the 
significance level of 0.05; M#: model numbers.

with model M3, the R2 of the dummy variable
model M6 increased by 0.134, while the 
RRMSE value decreased by 3.18%. The model 
accuracy did not change when the dummy 
variable was introduced into model M1. These 
results indicated that introducing dummy 
variables can increase the accuracy of the 
models with parameters b and c but the model 
with parameter a.
To compare the estimation accuracies from the 
multivariate regression models M2 and M3 
and the dummy variable models M5 and M6, 
the significant differences among their average 
absolute residuals were tested, as shown in 
Figure 4. The average absolute residuals of model 
M5 were significantly lower than those in model 
M2 at the 0.05 level (P =0.0021) (Figure 4a). The 
average absolute residuals of model M6 were 
significantly lower than those in model M3 at the 
0.1 level (P =0.088) (Figure 4b). These results 
indicated that introducing dummy variables 

can significantly increase the accuracy of the 
models with parameters b and c.

Training results of the ANN

D was selected as one of the input variables 
in the neural network due to the collinearity 
and similar effects on the diameter distribution 
between D and D2. The purpose of predicting 
the diameter distribution was to obtain the 
number or frequency of trees in each diameter 
class, so the diameter class (C) was considered 
a nonnegligible input variable. Therefore, D 
and C were used as the basic input variables 
for the neural network, and the stand variables 
BA, N and T were used as the input variables 
to be screened to determine an optimal network 
structure. Therefore, the oak forest ANN model 
was developed with C as the output variable and 
four variable combinations (D+C, D+C+BA, 
D+C+N, D+C+T) as the input variables.
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Figure 4 Analysis of variance for the average absolute residuals of M2 versus M5 and of M3 versus M6. 
M2 is the prediction model of parameter b, M3 is the prediction model of parameter c, M5 is the 
dummy variable model of parameter b, and M6 is the dummy variable model of parameter c.

Comparison of different numbers of neurons

The accuracy of the training results was influenced 
by the number of neurons during the training of the 
ANN. The training accuracy level with four neurons 
(S4) was significantly lower than that achieved 
from networks with more neurons (Figure 5). When 
D+C were used as input variables, there was no 
significant difference in the training accuracy from 
S6 to S14 (Figure 5a). When D+C+BA was used as 
the input variable, the training accuracy of S6 was 
significantly lower than the levels for S8 to S14, and 
there was no significant difference from S8 to S14 
(Figure 5b). When D+C+N was used as the input 
variable, the training accuracies of S6 to S8 were 
significantly lower than those of S10 to S14, and 
there was no significant difference from S10 to S14 
(Figure 5c). When D+C+T was used as the input 
variable, the results were consistent with the 
results obtained when D+C+N was used as the 
input variable (Figure 5d).

Optimal ANN

An analysis of variance was used to compare the 
optimal training results of different combinations 

of input variables (Table 6). No significant 
differences were observed between models M7 
and M8, indicating that the introduction of BA did 
not substantially improve the prediction accuracy 
of the ANN. The training errors of models M9 
and M10 were significantly lower than that of 
M7, indicating that the introduction of N or T 
substantially improved the prediction accuracy of 
the ANN. The training errors of model M10 were 
significantly less than those of the other models, 
indicating that the ANN model with D+C+T as 
input variables and 10 neurons was the optimal 
predictive model for oak forests.
 The accuracy of the best neural network 
model M10 was evaluated using the training, 
verification and test sets, and the correlation 
coefficients between observations and 
predicted values are shown in Figure 6. The 
correlation coefficients in the training set, 
verification set, test set and overall data set 
exceeded 0.962. Thus, model M10 performed 
well in the training process and can be applied 
for the diameter distribution prediction of oak 
forests.
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Figure 5 Analysis of variance comparing the MSE for different combinations of input variables and neurons 
for a), average DBH and diameter class as input variables, b) average DBH, diameter class and 
basal area as input variables, c) average DBH, diameter class and trees per hectare as input 
variables, d) average DBH, diameter class and stand type as input variables (MSE is the mean 
squared error, S# denotes the number of neurons, and different letters indicate that the MSE is 
different at a significance level of 0.05.

Table 6 Comparison of training errors for different combinations of input variables.

Model# Input variable
Number of 

neurons
MSE

M7 C, D 6 0.00187±0.00003a
M8 C, D, BA 8 0.00182±0.00005a
M9 C, D, N 10 0.00173±0.00008b
M10 C, D, T 10 0.00165±0.00003c

Note: C is the diameter class; D is the average DBH; BA is the basal area; N denotes the number 
of trees per hectare; T is the stand type; MSE is the mean squared error; M# denotes the model 
number; different letters indicate that the MSE is different at a significance level of 0.05.
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Figure 6 Correlation coefficient between observations and predicted value for the training set, verification 
set, test set and total set of the best neural network model (M10).

Table 7 Significant difference test of the average absolute residuals from zero using the stepwise regression 
model (M11), the dummy variable model (M12) and the ANN model (M10) based on the modelling 
data.

Model# R2 RRMSE 
(%)

RSS
Dummy variable Evaluation index

T value P value T value P value T value P value

M11 0.919 30.98 1.93 --- 1.359 0.175 4.419 0.000

M12 0.926 29.55 1.75 -1.359 0.175 --- 3.527 0.000
M10 0.941 26.65 1.43 -4.419 0.000 -3.527 0.000 ---
Note: R2 is the coefficient of determination; RRMSE is the relative root mean square error; RSS is the residual sum of squared
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Figure 7 The correlation coefficient and residual distribution between observations and predicted values for 
a) the stepwise regression model, b) the dummy variable model, and c) the ANN model.



16

Ann. For. Res. 64(2): 3-20, 2021 Research article 

Comparison and test of models

The predictive performances of the diameter 
distribution of the stepwise regression, dummy 
variable model and ANN model were compared 
using a t-test. The significant differences among 
their average absolute residuals are shown in 
Table 7. Compared to the stepwise regression 
model (M11), the R2 of the dummy variable 
model and ANN model increased by 0.007 and 
0.022, while the RRMSE value decreased by 
1.43% and 4.33%, respectively. The average 
absolute residual of the ANN model was 
significantly different from that of the stepwise 
regression model and dummy variable model. 
No significant differences were observed 
between the stepwise regression model and 
dummy variable model. These results show 
that the predictive performance of the diameter 
distribution based on ANN was more suitable 
than the stepwise regression model and dummy 
variable model.
The predictive performance of the three 
models was tested using validation samples 
(Figure 7). The correlation coefficients 
between the observations and predicted 
values were greater than 0.953. The residuals 
were evenly distributed with an absence of 
heteroskedasticity.

Discussion

The Weibull distribution is highly accurate in 
determining the diameter distribution of oak 
forests (Schreuder & Swank 1974). Carretero 
and Torres Alvarez (2013) argued that the 
Weibull distribution is a useful tool to predict 
the diameter distribution of oak forests. Our 
findings are consistent with those of other 
studies, and overall, the Weibull distribution 
showed very good applicability to oak forests. 
Although the Weibull distribution achieved 
the highest rate of accuracy (91.7%) of the 
six distribution functions, the gamma and 
lognormal distribution functions showed 
high rates of 86.5% and 82.0%, respectively. 

Podlaski & Zasada (2008) found that the 
Weibull distribution and gamma distribution 
function were suitable for predicting the 
diameter distribution of multilayer stands in 
fir and birch mixed forests. Lima et al. (2017) 
also found that the lognormal distribution 
function exhibited good applicability in 
Aspidosperma pyrifolium and Myracrodum 
urundeuva forests after comparing the fitting 
results of several distribution functions. From 
the results of the present study, we conclude 
that the Weibull, gamma and lognormal 
distribution functions show good applicability 
to diameter distribution, and the prediction 
effects of distribution functions may differ by 
tree species or stand structure. Some studies 
found that the SB function also shows high 
levels of applicability and is even superior 
to the Weibull distribution (Mønness 1982). 
The prediction effect between Weibull and 
SB was not compared because comparing the 
applicability of distribution functions was not 
the main purpose of this study.
 Some studies have verified that the dummy 
variable model exhibits a good fitting effect 
for qualitative data. Chen et al. (2017) found 
the dummy variable model to exhibit better 
performance than the general allometric 
equation. In this study, we introduced stand 
type as a dummy variable into the regression 
model to improve the predictive performance 
of the distribution function because related 
research has introduced dummy variables 
into the diameter distribution. We found the 
dummy variable to significantly increase 
the predictive performance of parameters b 
and c of the Weibull distribution (Table 5). 
Unfortunately, the prediction accuracy of the 
Weibull distribution in predicting the diameter 
distribution of oak secondary forests did not 
improve significantly (P=0.175<0.05). The 
possible reason for this result was that stand 
type may not fully reflect the differences in the 
diameter distribution due to the complex stand 
structure of oak secondary forests. Follow-
up studies should prioritize other dummy 
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variables, such as forest layer and stand age.
 The quantitative relationship between 
dependent variables and independent variables 
must be considered in advance using nonlinear 
regression to estimate model parameters, 
which makes it difficult to select mathematical 
functions and parameter estimation methods 
during modelling (Johnston et al. 2010). 
Compared to some definite mathematical 
models, the ANN offers substantial flexibility 
due to its ability to identify hidden relations 
in the data (Scrinzi et al. 2007). In this study, 
we found that the ANN model exhibited 
better predictive performance for the diameter 
distribution of oak forests than the traditional 
stepwise regression model or dummy variable 
model on the diameter distribution of oak 
forests. Compared with the stepwise regression 
model and the dummy variable model, 
the RRMSE of the ANN was significantly 
reduced by 1.33% and 2.9%, respectively. 
Meanwhile, the input variables of the ANN 
model included only three variables (C, D, T), 
and the independent variables of the multiple 
regression model and dummy variable model 
included five variables (D, D2, BA, N, T), 
which indicated that the ANN model has higher 
practicability and simplicity. However, while a 
traditional regression model can be established 
using a small sample, a large dataset is needed 
for an ANN to avoid overfitting.
 Unfortunately, factors such as stand age, 
forest layer and site index were not investigated 
in detail due to the complex stand structure and 
geomorphological structure of oak secondary 
forests, which led to few optional variables. 
Compared with the stepwise regression model 
and the dummy variable model, although the 
RRMSE of the ANN model in predicting the 
diameter distribution of oak secondary forest 
decreased significantly, the prediction accuracy 
may still have room for improvement. Follow-
up studies could prioritize the use of other 
variables, such as site index and stand age.

Conclusion

In this study, we attempted to find a new method 
to predict the stand diameter distribution of oak 
secondary forests. Compared with traditional 
regression methods, an ANN can significantly 
improve the prediction accuracy of the diameter 
distribution, and ANN models have higher 
practicability and simplicity than traditional 
regression methods. The ANN model that 
utilized the average diameter, diameter class 
and stand type as input variables established in 
this study can be used to predict the diameter 
distribution of oak secondary forests.
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