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Table 2 Summary statistics of tree detection on the validation area imagery from 2009 to 2016.

Measure
Method 1 Method 2
2009 2011 2012 2014 2016 Avg. 2009 2011 2012 2014 2016 Avg.

Nreference 47 47 47 47 47 47 47 47 47 47 47 47
Ncommission 3 3 4 0 0 2 4 3 3 5 3 4
Nomission 3 20 25 6 7 12 19 38 11 16 17 20
Nmatch 44 27 22 41 40 35 28 9 36 31 30 27
Nsegmented 47 30 26 41 40 37 32 12 39 36 33 30
Compl. (%) 94 57 47 87 85 74 60 19 77 66 64 57
Correct (%) 94 90 85 100 100 94 88 75 92 86 91 86
MAD (%) 94 70 60 93 92 82 71 31 84 75 75 67

Depending on the direction of the sun, tree 
branches could appear as separate trees
(Comber et al. 2012). The estimated correctness 
for each year was substantially higher for 
Method 1, particularly for 2009, 2014, and 2016, 
which showed the correctness values of 94% 
and 100% (Table 2). However, observed values 
from 2011 and 2012 reported slightly lower 
correctness values, at most 90%. Consequently, 
the algorithm performance depends on the 
texture, shadow, tone or color, size, and shape 
(Gibson 2014, Svatoňová & Šikl 2017, Vahidi 
et al. 2018).
 The lowest estimated completeness was 
observed in Method 2 (19% for 2011 imagery), 

while the highest estimated completeness was 
reported by Method 1 (94% for 2009 imagery). 
The calculated average completeness for 
Method 1 is 74%, which is 1.3 times higher 
than the average completeness measured with 
Method 2 (57%). The estimated average MAD 
is greater for Method 1 (i.e., 82%) compared 
with Method 2 (i.e., 67%) with the 2009 image 
showing the highest value (i.e., 94%). Overall, 
the accuracy assessment measures suggest that 
NAIP imagery acquired in 2011 and 2012 did 
not perform well, probably because of the low 
contrast of each set of images (Vahidi et al. 
2018), due to various eff ects such as haze and 
smoke (Poznanovic et al. 2014). The estimated 
average location bias, expressed in easting and 
northing coordinates, for Method 1 were 0.16 m 
and -0.22 m, respectively, whereas for Method 
2, the predicted northing had a southern bias 
of -0.11 m, and the easting was westward 0.05 
m (Table 3). The estimated average positional 
accuracy was higher for the Method 1 (i.e., 
RMSEeasting = 0.90 m and RMSEnorthing = 1.14 
m) compared to Method 2 (i.e., RMSEeasting = 
1.08 m and RMSEnorthing = 1.26 m) (Table 3). 
The average Euclidean distance between the 
estimated crown centroid and the location of the 
validation trees was lower for Method 1 (1.45 
m) than for Method 2 (1.68 m). The estimated 
precision for each year was higher for Method 
1, specifi cally in 2009, 2014, and 2016, which is 
less than the resolution of the images, indicating 
the potential use of the RF algorithm to detect 
trees based on the NAIP imagery.

Figure 6 Impact of shadow and adjacent trees on 
individual tree crown delineation.
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Table 3 Summary of bias and precision values. Avg. refers to the average and Euc.distance refers to the 
Euclidian distance between the centroid of segmented crown and the location of the validation 
trees.

Measure
Method 1 Method 2
2009 2011 2012 2014 2016 Avg. 2009 2011 2012 2014 2016 Avg.

Bias (m)
East -0.08 0.49 -0.12 0.38 0.11 0.16 -0.52 -1.02 0.11 0.66 0.23 -0.11
North -0.36 -0.22 -0.46 -0.28 0.23 -0.22 -0.46 -0.25 0.31 0.31 0.33 0.05
Precis (m)
East 0.71 1.08 1.06 0.79 0.88 0.90 0.99 1.41 0.68 1.14 1.16 1.08
North 0.90 1.49 1.33 0.98 0.98 1.14 1.07 1.07 1.53 1.30 1.33 1.26
Euc. Dist. (m) 1.14 1.85 1.71 1.25 1.32 1.45 1.46 1.77 1.68 1.72 1.77 1.68

However, visual interpretation of remotely 
sensed images involves a signifi cant amount 
of subjective decisions associated with human 
factors, such as experience, expertise, and 
onsite knowledge (Hall 2003, Svatonova 2016, 
Hoff man & Markman 2019). Hence, prior 
knowledge and onsite information (actual 
reference data, coordinates) could increase the 
accuracy of tree detection and location.

Forest cover change

The western juniper has a signifi cant impact 
on hydrological cycles and on the wildlife 
habitat. Therefore, accurate estimation of 
the area covered with western juniper is 
important for the restoration eff orts. Due to 
the lower overall testing 
accuracy of Method 2, 
we assessed the temporal 
changes in crown cover 
using only Method 1. 
The crown area exhibits 
a sinusoidal pattern 
through time (Figure 7), 
with an increase from 
2009 to 2011, followed 
by a decrease from 2011 
to 2012, then an increase 
from 2012 to 2014.
 The decrease in canopy 
cover for 2012, 2014, 
and 2016 compared 
with 2011 is due to the 

signifi cant increase in shadow (Figure 5). 
The diff erence between shadow and canopy 
is probably due to the low elevation of the 
sun when the images were acquired, which 
unevenly aff ected the refl ectance across the 
canopy. The sides facing the sun refl ected 
more radiance, whereas the obstructed part 
of the crown refl ected less, making it more 
similar to the shaded ground. The distinction 
between the shadow and canopy aff ects the 
accuracy of the estimated forest cover, likely 
underestimating the actual coverage, as 
seen in Figure 6. Nevertheless, even with a 
smaller than real surface, the analysis shows 
an increase in the area of western juniper, 
pointing toward the urgency of restoration 
eff orts.

Figure 7 Estimated forest cover change from 2009 to 2016 using method 1.
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Conclusion

The present study proposed an automated 
approach to detect the location of individual 
trees and canopy area of western juniper using 
1-m resolution NAIP imagery available in 
GEE. The tree and crown detection algorithm 
was trained with two methods: one using 
individual years and one using all years 
combined. The estimated overall training 
and testing accuracies were higher when the 
training was carried out on individual years 
rather than on all years combined. Therefore, 
the classification should be implemented 
using annual information to avoid inclusion 
of spectral variation due to the sensor type, 
weather, atmospheric condition, and position 
of the sun with respect to the area. Our results 
based on training the RF algorithm with yearly 
data showed encouraging performance with 
respect to completeness, correctness, and 
MAD. As in most remote sensing analyses, 
the classification of tree canopies not only was 
tedious but also iterative, as many runs were 
executed to properly identify the importance 
of the attributes describing the landscape, 
including canopy shadow, texture, and tone. 
Even when a separate class was introduced 
for shadow, the tree detection did not perform 
well, especially in 2011 and 2012, potentially 
due to tone and texture. The reduced accuracy 
in tree detection was reflected by the lower 
correctness, completeness, and MAD in 2011 
and 2012. The estimated tree location for 
Method 2 indicated southern bias in latitude 
direction and westward bias in longitude 
direction, whereas an inverse relationship 
was observed for Method 1. Many parameters 
play a significant role in tree identification 
and location using RF algorithm (e.g., the 
ratio of training/validation data, the number 
of decision trees, kernel method, and radius). 
Future studies should try to preprocess the 
images to remove or reduce the impact of 
shadow. Finally, because of its simplicity, 
the algorithm presented in this study can be 

extended to large areas with limited effort. 
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