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Using classification trees to predict forest structure 
types from LiDAR data
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Abstract. This study assesses whether metrics extracted from airborne Li-
DAR (Light Detection and Ranging) raw point cloud can be exploited to 
predict different forest structure types by means of classification trees. 
Preliminarily, a bivariate analysis by means of Pearson statistical test was 
developed to find associations between LiDAR metrics and the proportion 
of basal area into three stem diameter classes (understory, mid-story, and 
over-story trees) of 243 random distributed plots surveyed from 2007 to 
2012 in Trento Province (Northern Italy). An unsupervised clustering ap-
proach was adopted to determine forest structural patterns on the basis of 
basal area proportion in the three stem diameter classes, using a k-means 
procedure combined with a previous hierarchical classification algorithm. 
A comparison among the identified clusters centroids was performed by the 
Kruskall-Wallis test. A classification tree model to predict forest structural 
patterns originating from the cluster analysis was developed and validated. 
Between 18 potential LiDAR metrics, 11 were significantly correlated with 
the proportion of basal area of understory, mid-story, and overstory trees. 
The results coming from the agglomerative hierarchical clustering allowed 
identification of 5 clusters of forest structure: pole-stage (70% of the con-
sidered cases), young (15%), adult (24.3%), mature (24.3%), and old for-
ests (30%). Five LiDAR metrics were selected by the classification tree to 
predict the forest structural types: standard deviation and mode of canopy 
heights, height at which 95% and 99% of canopy heights fall below, differ-
ence between height at which 90% and 10% of canopy heights fall below. 
The validation tree model process showed a misclassification error of 45.9% 
and a level of user’s accuracy ranging between 100% and 33.3% in the 
validation data set. The highest level of user’s accuracy was reached in the 
classification of pole-stage forests (100%), in which more than 82% of basal 
area is due to the understory-trees, follow by the classification of old forests 
types (63.5% of basal area due to the overstory-trees) achieved 76.5% of 
user’s accuracy. The model has provided moderately satisfactory results in 
term of classification performance: substantial room for improvement might 
be established by multi- or hyperspectral imaging that allow detailed char-
acterization of the spectral behaviour of the forest structure types.
Keywords airborne laser scanning, discrete return laser scanner data, stem 
diameter classes, basal area, bivariate analysis, unsupervised clustering, 
classification tree model, forest inventory, forest management
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Introduction

Structure is one of the basic forest characteris-
tics. Even though the definition of forest stand 
structure is not fixed in the same manner as the 
traditionally considered forest inventory attrib-
utes (Maltamo et al. 2005), we can say that the 
structure represents a mutual arrangement of 
components next to each other or above each 
other (Šebeň & Bošeľa 2010).
 For forest management purposes, the stand 
structure is typically described at various 
scales in terms of number of trees or percent 
cover of a given species composition or ba-
sal area per hectare within certain size class-
es. Sometimes these descriptions are reduced 
to average stand statistics: the problem with 
this kind of statistics is that the same average 
can be produced from significantly different 
distributions of tree diameters (stem diameter 
measured at breast height, i.e. at 1.30 m from 
the ground, dbh). Hence if a more detailed de-
scription of the dbh distributions were avail-
able, then probably more reliable estimates 
could be made and used for responding to spe-
cies habitat uses and requirements, for devel-
oping silviculture and harvesting systems, and 
so to forecast timber supply of different quality 
(Moss 2012).
 To classify stand structure is important be-
cause the classification enables consistent, pre-
cise and verifiable information about the ex-
pected dbh distribution of trees within a stand. 

Silviculturists and forest managers typically 
use structural classification for management 
purposes. Differences in stand structure are 
important for applying different silvicultural 
interventions to manipulate stand dynamics in 
order to direct the stand development toward 
a specific direction. Moreover, stand structure 
classification is important for forest inventory 
purposes, because it can be used to pre-stratify 
forest areas to reduce the costs of sampling.
 Remotely sensed data is increasingly uti-
lized to assist traditional field-based methods 
in the estimation of forest structural attributes 
over extensive areas. Remote sensing is a val-
uable source of information in mapping and 
monitoring forest features (Corona 2010), and 
machine learning techniques, such as classi-
fication and regression trees, artificial neural 
networks and support vector machines, have 
been used to exploit remotely sensed data for 
forest stand type classification. In the use of 
remote sensing data for forestry applications, 
a typical machine learning task is to develop 
a predictive model which employs a set of 
remote sensing observations to predict forest 
conditions. The remotely sensed data most 
used for this purpose are satellite imagery (e.g. 
Ghose et al. 2010, Gomez et al. 2012, Fallah et 
al. 2013, Li et al. 2013, Griffiths et al. 2014). 
Although satellite data have been widely ex-
plored for this forest application, passive re-
mote sensing techniques are limited in their 
ability to capture forest structural complexity, 
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particularly in uneven-aged, mixed species 
forests with multiple canopy layers. General-
ly, these techniques are only able to provide 
information on horizontal (two-dimensional) 
forest extent. The vertical forest structure (or 
the interior of the canopy and the understory 
vegetation) cannot be mapped using these pas-
sive remote sensing techniques. On the other 
hand, it has been shown that the LiDAR (Light 
Detection and Ranging) technique, which has 
great capability of canopy penetration (Reute-
buch et al. 2003, Isenburg et al. 2014), yields 
such high density sampling that detailed de-
scription of the forest structure in three-dimen-
sions can be obtained.
 Consequently, the LiDAR has become the 
primary source for characterizing forest struc-
ture (Lefsky et al. 1999, Drake et al. 2002, Lim 
et al. 2003a, Corona & Fattorini 2008, Hyyp-
päa et al. 2008, Vierling et al. 2008, Hudak 
et al. 2009, Corona et al. 2012, Wulder et al. 
2012, Corona et al. 2014). Accordingly, much 
interest is attached to exploring the use of Li-
DAR data for modelling structural forest pa-
rameters. The LiDAR literature has extensive-
ly looked at forest structure characterization, 
following the approach of deriving LiDAR 
metrics (descriptive statistics) from point 
clouds within the specific analysis unit (e.g. 
plot, or stand) and run linear regression analy-
sis (Næsset 2002, Lim et al. 2003b, Holmgren 
& Jonsson 2004, Maltamo et al. 2005), multi-
variate linear regression analysis (Lefsky et al. 
1998, Lefsky et al. 1999, Sherrill et al. 2008, 
Ediriweera et al. 2014), stepwise regression 
analysis (Means et al. 2000), Weibull probabil-
ity density function (Coops et al. 2007) to re-
late these variables to field measurements for-
est structure attributes, such as canopy height, 
fractional vegetation cover, basal area, etc.
 As Zhao et al. (2008) highlighted, in the case 
of using statistical analysis tools for inferring 
relationship and making prediction, of particu-
lar importance are the selection of appropri-
ate statistical procedures for model building 
and, more important, the choice of metrics 

that should enter the models, and hence the 
statistical procedures to determine those pre-
dictors. Between hundreds of metrics that can 
be extracted from LiDAR data, conventional 
rules are used to select metrics for estimating 
a canopy variable, such as the physical link-
age of metrics to the variable in question, the 
avoidance of multicollinearity, and the opti-
mization of certain statistical measures like 
R-squared, the Akaike information criterion 
and the Bayesian information criterion (Zhao 
et al. 2008).
 As confirmed by remote sensing studies 
conducted in the past years (Durbha et al. 
2007, Zhao et al. 2008), supervised learning 
techniques, e.g. machine learning, may be 
chosen because of their usefulness in tackling 
high-dimensional problems in assessing forest 
biophysical parameters. This outcome has also 
been demonstrated in recent studies. Zhao et 
al. (2011) verified that models developed us-
ing support vector machine and Gaussian pro-
cesses as machine learning in conjunction with 
the LiDAR composite metrics to characterize 
forest canopy structure outperformed tradi-
tional approaches such as the maximum like-
lihood classifier and linear regression models. 
Gleason and Im (2012) compared the effec-
tiveness of four machine learning approaches 
for estimating biomass in moderately dense 
forest at both tree and plot levels: their results 
indicated that biomass estimation accuracy im-
proves when modelled at the plot level and that 
support vector regression produced the most 
accurate biomass model. Garcia-Gutierrez et 
al. (2014) presented a comparison between 
the classic multiple linear regression-based 
methodology and regression techniques in 
machine learning (neural networks, support 
vector machines, nearest neighbour, random 
forests) to estimate crown biomass, stem bio-
mass, aboveground biomass, basal area, domi-
nant height, mean height, and volume at stand 
level by LiDAR metrics. The results of Gar-
cia-Gutierrez et al. (2014) showed that classic 
multiple linear regression is outperformed by 
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machine learning technique. Görgens et al. 
(2015a) compared the performance of three 
machine learning tools (neural network, ran-
dom forest and support vector regression) for 
predicting stand volume of fast-growing forest 
plantations by metrics extracted from an ALS 
survey with the conventional method that uses 
regression models through variables reduction 
and selection: LiDAR metrics were proven to 
be more effective for the estimation of stand 
volume.
 Various studies considered the use of ma-
chine learning techniques applied to LiDAR 
data integrated with satellite or airborne im-
agery for the identification of forest canopy pa-
rameters. Dalponte et al. (2008) in their anal-
ysis on the joint effect of hyperspectral and 
LiDAR data for the classification of complex 
forest areas using support vector machines and 
Gaussian maximum likelihood proved that 
support vector machine classifier was robust 
and accurate in the exploitation of the consid-
ered multisource data.
 Ke et al. (2010) used synergistically mul-
tispectral imagery and LiDAR data for ob-
ject-based forest species classification utilizing 
machine learning decision trees: they obtained 
high classification accuracy using both spec-
tral- and LiDAR-derived metrics based on 
objects segmented from both spectral and Li-
DAR layers.
 On the basis of the those results, we asserted 
that machine learning techniques perform bet-
ter than conventional regression approaches 
for forest structure classification. In our case 
study, we applied machine learning to classify 
the structure of mountain forests with complex 
structures (multi-layered forests), an issue that 
has hitherto remained untested due to the fact 
that the large part of previous studies was con-
ducted mostly in temperate and boreal forests 
of Europe and North America relatively homo-
geneous from the structural point of view.
 Moreover, with this study we wanted to use 
machine learning techniques not to predict sin-
gle field measured attributes which, individu-
ally considered, provide information about an 

aspect of the forest structure, but not about the 
forest stand structure itself. Conversely, we 
wanted to predict forest structure types.
 Distinctively, the goal of this research was 
to explore the potential of LiDAR data to clas-
sify forest structure types of mountain forests 
in Italian Alps (Trento province) by means of 
classification trees. We examined the poten-
tial of LiDAR point cloud-derived metrics to 
model the proportion of basal area in three 
dbh classes at stand level (as direct estimator 
of type of structure). Specific objectives of the 
study are: (i) to identify different types (pat-
terns) of forest structures on the basis of the 
proportion of basal area in three dbh classes 
which describe understory, mid-story and 
overstory trees via an unsupervised cluster 
analysis, (ii) to develop a classification tree 
model based on a set of variables derived from 
LiDAR point cloud to predict the forest struc-
ture types identified through the cluster analy-
sis and (iii) to test and verify the ability of the 
developed classification tree model as statisti-
cal techniques for classifying forest structure 
type.

Materials and methods

Study area

The study area is the province of Trento (6212 
km2) located in the North-East of Italy on the 
Southern side of the Alps chain. The territory 
is almost entirely mountainous: around 60% of 
the surface is located at an altitude higher than 
1000 m a.s.l.., 19% between 600 and 1000 m 
a.s.l., and 21% between 200 and 600 m a.s.l..
The climate of the province is cool, temperate 
and mild continental. The mean annual tem-
perature is 11.5 °C, while the annual rainfall 
average is 883 mm with two main peak peri-
ods, in spring (May rainfall averages 94 mm) 
and autumn (October rainfall averages 110 
mm).
 The area of Trento province, according to 
its geographical and climatic gradients, can be 
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divided into three zones: endalpica, mesalpica 
and esalpica (Odasso 2002), to which differ-
ent forest vegetation correspond. The endal-
pica zone includes upland areas with higher 
elevation and landlocked valleys. There are 
environments with harsh continental climate, 
particularly favourable to forest communities 
dominated by boreal conifers like Norway 
spruce (Picea abies (L.) H. Karst), Scots and 
black pines (Pinus sylvestris L. and Pinus ni-
gra Arnold), Swiss pine (Pinus cembra L.), 
and European larch (Larix deciduas Mill.). 
The mesalpica zone include mountains with 
relatively lower elevations, generally found 
on plateaus and in valleys, typically with 
East-West orientation and with average eleva-
tion around 1000 m a.s.l.. Cool climate, from 
sub-continental to sub-oceanic, characterizes 
this zone, where forests are dominated by mes-
ophile tree species like silver fir (Abies alba 
Mill.) and beech (Fagus sylvatica L.). The es-
alpica zone is concentrated in a central strip 
orientated North-South in the Trento province 
territory, with elevation below 1000 m a.s.l., 
characterized by incursions of species with 
sub-Mediterranean or steppe character, domi-
nated by the forests composed of thermophile 
broad leaved trees (Ostrya carpinifolia Scop., 
Carpinus betulus L., Fraxinus ornus L., Quer-
cus pubescens Willd., Quercus petrae (Mattus-
chka) Liebl.).
 Of the Trento province surface, 55.7% is 
covered by forests (PAT 2008): 59.2% of the 
forest are predominantly composed by Nor-
way spruce, 17.3% by European larch, 10.6% 
by silver fir, 6.1% by Scots and black pines, 
4.3% by beech, 1.4% by Swiss pine and 1.1% 
by other broad-leaved species (PAT 2008).
 Public institutions ownes 76.3% of the forest 
surface (PAT 2008) which is subject to a forest 
management plan with broad objectives, such 
as maintaining productive function of the for-
est, management of the services provided by 
the forest (protection, tourism and recreation, 
carbon dioxide fixation, etc), and improvement 
and conservation of biodiversity in terms of 
species, habitat and landscape (Torresan et al. 

2014). In Trento province, 79% of the forest 
surface is managed by the system of seed tree 
and shelterwood, while the remaining 21% by 
the coppice system (PAT 2008).

Field data collection and response variable

The dendrometric data used in this study com-
prise a collection of data coming from three 
different sites located in Trento province. We 
used data available from previous experiments 
to have a sample of the most representative of 
different cases of basal area distribution into 
dbh classes because the percentage of basal 
area in three classes of trees, defined as small 
trees or understory (17.5 cm to 27.4 cm dbh), 
medium trees or mid-story (27.5 to 47.4 cm 
dbh), and large trees or overstory (above 47.5 
cm dbh), is the criterion used by the Forest 
Service of the Trento Province to classify the 
structure of forest stands.
 The first data set includes 92 circular plots 
with different sizes (531, 1257, 1964 and 2827 
m2) randomly distributed in forest compart-
ments of public lands. The field surveys were 
carried out from June to September 2007. The 
center of each plot was georeferenced with a 
Thales MobileMapper CE Global Positioning 
System (GPS) receiver recording at minimum 
200 observations on the ground surface. Af-
terwards the geographical coordinates of plot 
centers were differentially corrected. The spe-
cies was recorded and dbh of trees greater than 
or equal to 7.5 cm was measured from two or-
thogonal axes by timber caliper and then aver-
aged.
 The second data set refers to data collect-
ed during research activities whose aim was 
to investigate stand structure indices as tools 
to support forest management (Pastorella and 
Paletto 2013). Stratified random sampling was 
applied to place 24 plots in Norway spruce for-
ests pure and mixed with silver fir, 12 plots in 
beech forests, 12 plots in Scots pine forests, 
and 6 plots in European larch forests for a to-
tal of 54 plots surveyed. Field surveys were 
carried out from June to September 2012. The 
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center of each circular plot was georeferenced 
by a Garmin eMap GPS receiver recording at 
minimum 200 satellite positions on the ground 
surface. The plot area was 531 m2. For all trees 
with dbh greater than or equal to 4.5 cm, the 
specie was recorded and the dbh was measured 
from two orthogonal axes by timber caliper 
and then averaged.
 The third data set is made up by data col-
lected in three specific forest areas of Trento 
province: Foresta Demaniale di Paneveggio 
(North East of Trento province), Padergnone 
municipality (central part of Trento province), 
and Val di Sella (South East of Trento prov-
ince). In total 110 plots were randomly distrib-
uted over those three areas. The field surveys 
were carried out during the 2007 summer sea-
son. The plot areas were 531 m2 and 1257 m2. 
The nominal coordinates of plot center were 
reached using a navigation assisted by a GPS 
receiver according to the protocol adopted in 
the National Forest Inventory (Scrinzi and 
Floris 2003). The center of each plot was geo-
referenced with Thales MobileMapper CE and 
Trimble Geo-XT GPS receivers recording at 
minimum 200 satellite positions on the ground 
surface. Afterwards the geographical coordi-
nates of plot centers were differentially cor-
rected and averaged. In each plot, tree species 
was recorded and dbh was measured as aver-
age of two orthogonal axes from a threshold 
of 2.5 cm using timber calipers. Figure 1 illus-
trates the location of 256 plots.
 The dbh was used to calculate the basal area 

of each tree and successively the field-based 
proportion of basal area in the three dbh class-
es (understory, mid-story and over-story) on 
each plot needed in the cluster analysis “for 
constructing a sensible and informative classi-
fication of the initially unclassified set of data” 
(Everitt et al. 2001).

LiDAR data acquisition, LiDAR point clouds 
processing and metrics computation

During the 2006-2007 autumn and winter sea-
sons, the Province of Trento commissioned 
Blom CGR S.p.A. to conduct an airborne laser 
scanning (ALS) campaign over its entire terri-
tory. Discrete return LiDAR data for the whole 
surface of Trento province were acquired by an 
Optech ALTM3100C laser system mounted in 
Partenavia P68. The LiDAR system recorded 
range and intensity of 2 returns per pulse, and 
achieved a nominal density of 1.28 points per 
m2 (Table 1).
 In 2013, the Province of Trento made avail-
able the raw LiDAR data throughout all its ter-
ritory. Raw LiDAR data were delivered in tiles 
of 2 x 2 km2 without overlap.
 TerraScan (Terrasolid) and LAStools (rap-
idlasso GmbH) software were used to process 
the LiDAR point cloud data. The parameters 
of the “Classify ground” function, based on 
the Axelsson (1999) algorithm’s, were set to 
5 m in the case of the max building size, to 
80° in the case of the terrain angle, to 8° in the 
case of the iteration angle and to 2 m in the 

case of the iteration dis-
tance. LAStools was used 
to normalized the height of 
each point with respect to 
the ground surface. Once 
the LiDAR data were nor-
malized, the point data 
were processed to extract 
LiDAR metrics at the plot 
level: the plot level varia-
bles are statistics calculat-
ed on the LiDAR points 
falling within the spatial Figure 1 Plot locations over the territory of Trento province
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border corresponding to the boundary of each 
field plot. The statistics were computed on all 
points LiDAR heights (i.e. both first and last 
return) above 2 m using freely-available FU-
SION software (McGaughey 2012). For our 
study, we decided to use only the plots with 
a density of at least 0.5 points/m2: in this way 

243 plots (out of the 256 available) were se-
lected and used for the purposes of this work. 
LiDAR metrics considered in this study are 
described in Table 2. Canopy relief ratio is a 
quantitative descriptor of the relative shape of 
the canopy from altimetry observation (Pike 
& Wilson 1971, Parker & Russ 2004) which 

Sensor Optech ALTM3100C
Acquisition date Autumn and winter 2006, 2007
Flight altitude 1500 m above ground
Flight line sidelap 50%
Maximum off-nadir scan angle 25°
Returns/pulse 2
Density 1.28 pulses m-2

Pulse repetition 33 kHz
Laser wavelength 800 nm

Acquisition parameters of the 2006-2007 autumn and winter airborne laser campaignTable 1 

Name of metric Description
hmean Mean of LiDAR heights intersecting plot
hmode Mode of LiDAR heights intersecting plot
hstd Standard deviation of LiDAR heights intersecting plot
hcv Coefficient of variation of LiDAR heights intersecting plot
hiqdist Interquartile distance of LiDAR heights intersecting plot
hske Skewness of LiDAR heights intersecting plot
hkur Kurtosis of LiDAR heights intersecting plot

haad
Average absolute deviation of LiDAR heights intersecting plot (= the average 
distance between the height of each LiDAR point and the mean height of LiDAR 
point in the plot)

hp01 Height at which 1% of LiDAR heights intersecting plot fall below
hp05 Height at which 5% of LiDAR heights intersecting plot fall below

hp50 Height at which 50% of LiDAR heights intersecting plot fall below (median of 
LiDAR height intersecting plot)

hp95 Height at which 95% of LiDAR heights intersecting plot fall below
hp99 Height at which 99% of LiDAR heights intersecting plot fall below

hp90_hp10 Difference between height at which 90% of LiDAR heights intersecting plot fall 
below and height at which 10% of LiDAR heights intersecting plot fall below

crr
Canopy-relief ratio (ratio of the difference between the mean and the minimum of 
LiDAR heights intersecting plot over the difference between the maximum and the 
minimum of LiDAR heights intersecting plot)

vegcover Canopy cover (ratio of the number of returns intersecting plot with height ≥2 m over 
the total number of returns intersecting plot)

percretabmean Percentage of all returns above the mean of LiDAR heights intersecting plot
percretabmode Percentage of all returns above the mode of LiDAR heights intersecting plot

LiDAR metrics used in the analysisTable 2 
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describes the degree to which canopy surfaces 
are in the upper (crr > 0.5) or in the lower (crr 
< 0.5) portions of the height range.

Methods

To achieve the goal of the study, as prelimi-
nary investigation a bivariate analysis was 
performed to assess the relationship between 
LiDAR variables, and the proportion of basal 
area of understory, mid-story, and overstory 
trees. For this purpose, a Pearson correlation 
test was applied using the Bonferroni method 
to correct p-values for multiple testing.
 To further investigate differences in for-
est structures and hence identify the number 
of clusters of forest types, an unsupervised 
cluster analysis was performed to identify the 
different types of forests based on the pro-
portion of basal area in three classes, using 
a hierarchical classification algorithm based 
on a Ward (1963) criterion. The hierarchical 
clustering was then improved by applying a 
k-means algorithm. A comparison among the 
identified clusters centroids was performed by 
the Kruskal-Wallis test.
 Classification trees were used to assess the 
capability of LiDAR metrics as predictors to 
explain the forest structures identified through 
the cluster analysis. The results of this super-
vised technique were then internally validated 
with the misclassification error to evaluate its 
global performance. An external validation was 
accomplished splitting the general sample into 
two sub-samples: the training set, composed 
by the 75% of observations, and the validation 
set, with the remaining 25% of observations. 
The results of validation were categorized in a 
contingency table, reporting errors of commis-
sion, sometimes also called “false positives”, 

which refer to the percentage of observations 
incorrectly classified, and errors of omissions, 
also called “false negative”, which refer to 
percentage of observations that are missed in 
classification in the specific group.
 All statistical analyses were performed us-
ing stats and rpart R packages.

Results

Basic statistics

Table 3 reports the statistical distribution of 
response variables across the 243 plots under 
investigation.
 The results from the bivariate analysis be-
tween LiDAR metrics and the proportion of 
basal area of understory, mid-story, and over-
story trees are reported in Table 4.
 The mean LiDAR height intersecting plots 
is negatively correlated with the percentage of 
basal area of small trees: this means that large 
values of mean height are associated with 
small values of the proportion of basal area of 
understory trees. Conversely large values of 
mean height are associated with large values of 
the proportion of basal area of overstory trees.
The highest percentile (95th and 99th) and the 
difference between the 90th and the 10th percen-
tile are significantly correlated with the pro-
portion of basal area of understory, mid-story, 
and overstory trees. No variable related to can-
opy cover (vegetation cover, percentage of all 
returns above the mean or the mode of LiDAR 
heights intersecting plots) was significantly 
correlated with the proportion of basal area of 
understory, mid-story, and overstory trees.

Canopy position of trees Minimum Maximum Mean Standard deviation
Understory 0.00 100 21.57 21.87
Mid-story 0.00 100 46.04 20.41
Overstory 0.00 97.53 32.39 25.41

Statistical distribution of percentage of basal area of understorey, mid-story and overstorey treesTable 3 
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Forest structure patterns

The results coming from the agglomerative hi-
erarchical clustering allowed identification of 
5 clusters of forest structure. Consequently the 
application of k-means algorithm with k = 5 in 
the partitive clustering provides an optimiza-
tion of this classification.
 According to the results, we classified our 
plots in pole-stage, young, adult, mature, and 
old forests. Figure 2 shows the dendrogram of 
the forest structure patterns identified by the 
cluster analyses after applying the k-means 
algorithm. Most parts of the forests in Trento 
province are old forests (30%), while the lower 
part is represented by pole-stage forests (7%). 
Young forests represent almost 15% of all for-
est patterns, and adult and mature forests are 
equally distributed (24.3%).
 Table 5 reports the results from the non-par-
ametric Kruskal-Wallis tests together with the 

average values of LiDAR metrics for the five 
forest structure patterns. These results suggest 
that different patterns are detected with the hi-
erarchical classification method. Out of 18, 11 
LiDAR variables (hmean, hmode, hstd, hcv, 
hiqdist, hkur, haad, hp50, hp95, hp99, hp90_
hp10), with p-values lower than 0.05, resulted 
in statistically distinguishable differences be-
tween the five patterns.
 From the interpretation of the results, as in-
dicated by LiDAR metrics values, pole-stage 
forests have mean height of 13 m, standard de-
viation of height around 2.6 m, height at the 
99th percentile of 17.8 m.
 As indicated by LiDAR metrics mean val-
ues, young forests are taller than pole-stage 
forests (mean height of 14 m), standard devia-
tion of height is around 4 m, and height at the 
99th percentile around 22 m. According to the 
average values of LiDAR metrics, in adult for-
ests the mean height is around 16.3 m, stand-

Pearson correlation coefficient (rP) with the associated Bonferroni corrected p-values (p-value-
BC) between LiDAR metrics and proportion of basal area of understory (%BA understory trees), 
mid-story (%BA mid-story trees), and overstory trees (%BA overstory trees). Values in bold indi-
cate p-values <0.05. The abbreviatons follow the Table 2.

Table 4 

Metric name %BA understory trees %BA mid-story trees %BA overstory trees
hmean -0.54 (0.0000) -0.13 (0.7205)  0.57 (0.0000)
hmode -0.49 (0.0000) -0.09 (1.0000)  0.49 (0.0000)
hstd -0.68 (0.0000) -0.21 (0.0164)  0.76 (0.0000)
hcv -0.28 (0.0002) -0.06 (1.0000)  0.29(0.0001)
hiqdist -0.60 (0.0000) -0.20 (0.0364)  0.67 (0.0000)
hske -0.02 (1.0000) -0.06 (1.0000)  0.07 (1.0000)
hkur  0.30 (0.0000) -0.02 (1.0000) -0.24 (0.0034)
haad -0.66 (0.0000) -0.21 (0.0205)  0.73 (0.0000)
hp01  0.04 (1.0000) -0.06 (1.0000)  0.02 (1.0000)
hp05 -0.15 (0.2981) -0.04 (1.0000)  0.17 (0.1559)
hp50 -0.54 (0.0000) -0.12 (1.0000)  0.56 (0.0000)
hp95 -0.66 (0.0000) -0.20 (0.0387)  0.73 (0.0000)
hp99 -0.66 (0.0000) -0.20 (0.0280)  0.73 (0.0000)
hp90_hp10 -0.66 (0.0000) -0.19 (0.0453)  0.72 (0.0000)
crr  0.00 (1.0000)  0.03 (1.0000) -0.02 (1.0000)
vegcover -0.10 (1.0000) -0.07 (1.0000)  0.14 (0.5272)
percretabmean -0.11 (1.0000) -0.03 (1.0000)  0.12 (1.0000)
percretabmode -0.02 (1.0000) -0.05 (1.0000)  0.05 (1.0000)
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ard deviation is 4.6 m and height at the 99th 
percentile is around 25 m.
 Considering the resulting analysis, mature 
forests have mean height of 16 m, with stand-
ard deviation of height around 6 m, height at 
the 99th percentile of 30 m.
 As indicated by LiDAR metrics mean values, 
old forests have mean height of 21 m, standard 

deviation of height around 7 m, height at the 
99th percentile of 33.5 m.

Classification trees to predict forest structure 
and model validation

The classification tree selected five ALS met-
rics to predict the forest structural types: stand-

Metric name %BA understory trees %BA mid-story trees %BA overstory trees
hmean -0.54 (0.0000) -0.13 (0.7205)  0.57 (0.0000)
hmode -0.49 (0.0000) -0.09 (1.0000)  0.49 (0.0000
hstd -0.68 (0.0000) -0.21 (0.0164)  0.76 (0.0000)
hcv -0.28 (0.0002) -0.06 (1.0000)  0.29(0.0001)
hiqdist -0.60 (0.0000) -0.20 (0.0364)  0.67 (0.0000)
hske -0.02 (1.0000) -0.06 (1.0000)  0.07 (1.0000)
hkur  0.30 (0.0000) -0.02 (1.0000) -0.24 (0.0034)
haad -0.66 (0.0000) -0.21 (0.0205)  0.73 (0.0000)
hp01  0.04 (1.0000) -0.06 (1.0000)  0.02 (1.0000)
hp05 -0.15 (0.2981) -0.04 (1.0000)  0.17 (0.1559)
hp50 -0.54 (0.0000) -0.12 (1.0000)  0.56 (0.0000)
hp95 -0.66 (0.0000) -0.20 (0.0387)  0.73 (0.0000)
hp99 -0.66 (0.0000) -0.20 (0.0280)  0.73 (0.0000)
hp90_hp10 -0.66 (0.0000) -0.19 (0.0453)  0.72 (0.0000)
crr  0.00 (1.0000)  0.03 (1.0000) -0.02 (1.0000)
vegcover -0.10 (1.000) -0.07 (1.0000)  0.14 (0.5272)
percretabmean -0.11 (1.0000) -0.03 (1.0000)  0.12 (1.000)
percretabmode -0.02 (1.0000) -0.05 (1.0000)  0.05 (1.0000)

Average values of LiDAR metrics for the five forest structure patterns and p-values from the  
Kruskal-Wallis test

Table 5 

Characteristics of the five forest structure patterns resulting from the cluster analysis. Abbrev.: 
BAu - basal area of understory, BAm - basal area of mid-story, BAo - basal area of overstory.

Figure 2 
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ard deviation and mode of canopy heights, 
height at which 95% and 99% of canopy 
heights fall below, difference between height 
at which 90% and 10% of canopy heights fall 
below.
 The structure of classification tree to pre-
dict forest patterns is showed in Figure 3: the 
values in the rectangles show the number and 
percentage of observations in the node. The 
tree model provided classification rules to pre-
dict the five forest patterns as in the following 
lines.
 A stand is a pole-stage forest if the standard 
deviation of LiDAR heights intersecting the 
woodland is lower than 2.3 m. We can classify 
a stand as young forest if the standard deviation 
of LiDAR heights is between 2.3 m and 4.3 
m and the 95th percentile of LiDAR heights 
is lower than 15 m or the standard deviation 
is in the same range but the 95th percentile is 
bigger than 15 m and the 99th percentile of the 

LiDAR heights is bigger or equal than 22.4 m.
We can distinguish adult forests from mature 
forests because the former have a difference 
between 90th percentile and 10th percentile 
of LiDAR heights bigger or equal to 12.2 m 
while in the mature forest this difference is 
lower than 12.2 m. A forest stand can be clas-
sify as old forest when the standard deviation 
of LiDAR heights is bigger or equal than 5.1 
m and the 95th percentile of LiDAR heights is 
bigger than 29 m or when the standard devia-
tion is bigger or equal than 7.0 m but the 95% 
of the LiDAR heights is smaller than 29 m.
 Table 6 reports the results of the internal 
validation of the tree model. The basal error, 
or the error for the null model, calculated as 
difference between 1 and the forest structure 
pattern most represented, reached 70.0%. The 
misclassification error reached 36.2%. Omis-
sion error ranged between 19.2% (old forests) 
and 52.5% (mature forests), while commission 

 
Classification tree predicting the five forest patternsFigure 2 
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Stage/accuracy

Predicted

Total
User 
accuracy
(%)

Commi-
ssion 
error 
(%)

Pole-
stage 
forests

Young 
forests

Adult 
forests

Mature 
forests

Old 
forests

O
bs

er
ve

d

Pole-stage forests 9 2 0 0 0 11 81.8 18.2
Young forests 2 19 8 3 0 32 59.4 40.6
Adult forests 5 9 40 7 5 66 60.6 39.4
Mature forests 1 5 7 28 9 50 56.0 44.0
Old forests 0 0 4 21 59 84 70.2 29.8

Total 17 35 59 59 73 243
Producer accuracy (%) 53.0 54.3 67.8 47.5 80.8 Total accuracy (%) 63.8
Omission error (%) 47.0 45.7 32.2 52.5 19.2 Misclassification error (%) 36.2

Stage/accuracy

Predicted

Total
User 
accuracy
(%)

Commi-
ssion 
error 
(%)

Pole-
stage 
forests

Young 
forests

Adult 
forests

Mature 
forests

Old 
forests

O
bs

er
ve

d

Pole-stage forests 7 1 0 0 0 8 87.5 12.5
Young forests 1 20 7 1 1 30 66.7 33.3
Adult forests 6 4 24 10 2 46 52.2 47.8
Mature forests 0 3 5 29 11 48 60.4 39.6
Old forests 0 0 6 7 37 50 74.0 26.0

Total 14 28 42 47 51 182
Producer accuracy (%) 50.0 71.4 57.1 61.7 72.5 Total accuracy (%) 64.3
Omission error (%) 50.0 28.6 42.9 38.3 27.5 Misclassification error (%) 35.7

Stage/accuracy

Predicted

Total
User 
accuracy
(%)

Commi-
ssion 
error (%)

Pole-
stage 
forests

Young 
forests

Adult 
forests

Mature 
forests

Old 
forests

O
bs

er
ve

d

Pole-stage forests 1 0 0 0 0 1 100 0.0
Young forests 2 4 1 0 1 8 50.0 50.0
Adult forests 0 2 7 2 0 11 63.6 36.4
Mature forests 0 1 7 8 8 24 33.3 66.7
Old forests 0 0 2 2 13 17 76.5 23.5

Total 3 7 17 12 22 61
Producer accuracy (%) 33.3 57.1 41.2 66.7 59.1 Total accuracy (%) 54.1
Omission error (%) 66.7 42.9 58.8 33.3 40.9 Misclassification error (%) 45.9

Contingency table resulting from the classification of five forest structural pattern by the classifica-
tion tree (internal validation on all observations)

Table 6

Contingency table of external validation resulting from the classification of five forest structural 
patterns by the classification tree (training set made up with 75% of observations)

Table 7 

Contingency table of external validation resulting from the classification of five forest structural 
patterns by the classification tree (validation set made up with 25% of observations)

Table 8 
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error was between 18.2% (pole-stage forests) 
and 44.0% (mature forests). There are no cas-
es in which old forests have been classified as 
pole-stage or young forests and vice versa.
 Table 7 and Table 8 report the results of the 
validation of tree model in the training and va- 
lidation data set respectively. The misclassifi-
cation error reached 45.9% in the validation 
data set. No pole-stage forests were classified 
as old forests, while 2 out of 8 cases of young 
forests were classified as old forest (25.0%), 
no adult forests were classified as old forests, 
and 8 out of 24 cases of mature forests were 
classified as old forests (33.3%).

Discussion

This study examined the performance of clas-
sification trees to predict structure types of 
mountain forests in the Italian Alps by metrics 
extracted from ALS data.
 This study put together observations of den-
drometric measurements from different data 
sets. Our observations were first of all wide-
ly distributed over the area of the territory of 
Trento province. Second, they included cases 
with very different basal area distributions in 
the three dbh classes in order to compose a 
proper sample size to generate reliable deci-
sion trees.
 In all data sets, species were recorded but 
this information was not necessary for the aims 
of the study. Moreover, diameter of trees was 
measured starting from different thresholds 
(7.5, 4.5 and 2.5 cm), but this was not a prob-
lem considering that the trees are subdivided 
in the three diameter classes from the limit of 
17.5 cm. Plots have different size because the 
field surveys were made with various aims, but 
many studies aimed at analysing the influence 
of plot size (and LiDAR density in some cas-
es) on forest structure attribute estimates (i.e. 
Strunk et al. 2012, Watt et al. 2013, Ruiz et 
al. 2014) have demonstrated that minimum 
plot areas of 500-600 m2 are needed for ba-

sal area estimates and that larger plot sizes do 
not significantly increase the accuracy of the 
estimates, but they do, however, increase the 
cost of fieldwork. We want point out that the 
assessment of the influence of plot size on for-
est structure attribute by means of LiDAR data 
was not a goal of this study.
 In consideration of all of the above, the re-
sults of this study has evidenced that the pro-
portion of basal area in dbh classes is a val-
uable parameter to distinguish different forest 
structural types and confirm that ALS data are 
a useful information source to predict forest 
structure types.
 In previous work in which the use of Li-
DAR-derived CHM metrics were used to pre-
dict twelve forest structures types defined by 
the forest structural classification system used 
by the Forest Service of Trento Province, Tor-
resan et al. (2014) indicated the possibility of 
investigating the prediction using a simplified 
number of structures (considering for example 
mono-layered, bi-layered and the multi-lay-
ered forest stands). In this study, five patterns 
of forest structure have been identified by the 
unsupervised cluster analysis based on the dis-
tribution of basal area in understory, mid-story 
and overstory trees: pole-stage, young, adult, 
mature and old forests. The analyses have 
drawn attention to the fact that the stands of 
the study area here considered are comprised 
of mature forests with a trend toward ageing. 
In fact, most forest stands in Trento province 
are old forests, with a large percentage of over-
story-trees (63.5%). Considering that old trees 
do not act simply as senescent carbon reser-
voirs but actively fix large amounts of carbon 
compared to smaller trees (Stephensons et al. 
2014), this is a good news, as the Trento forests 
are major components of the global carbon cy-
cle, providing substantial feedback to atmos-
pheric greenhouse gas concentrations. In any 
case, the results from our study can be used by 
forest managers to address the development of 
the forests in specific directions with the ap-
propriate silvicultural interventions.
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 The level of user’s accuracy, which refers 
to the probability that a forest classified as 
a certain structure type is really this type, of 
the classification tree model developed in this 
study ranged between 100% and 33% in the 
validation data set made up with 25% of obser-
vations. The highest level of user’s accuracy 
was reached in the classification of pole-stage 
forests (100%) in which more than 82% of 
basal area is due to the understory-trees. This 
could be due to the fact that the pole-stage for-
ests are dense and homogeneous forests in term 
of structure, so in this cases LiDAR pulses are 
detected by a sort of “blanket”. When the com-
plexity of the structure increases (multi-lay-
ered structures), the probability that LiDAR 
pulses penetrated below the canopy decreased 
by interference of middle and understory stra-
ta. This caused considerable impact on densi-
ty of LiDAR points below the canopy, which 
could affect the accuracy of laser metrics (Edi-
riweera et al. 2014). This is confirmed also by 
the fact that the prediction of old forests types 
(63.5% of basal area due to the overstory-trees) 
from LiDAR data achieved high level of user’s 
accuracy (76.5%).
 Due to the lack of references that used clas-
sification trees as machine learning techniques 
to predict types of forests - instead of single 
forest biophysical variables - and hence due to 
the difficulty of finding values of classification 
accuracy, the discussion of our results relative 
to other findings in the literature is based on 
the most similar studies.
 The classification results of forest types, 
presented in Zhao et al. (2011), showed that 
LiDAR data discriminate between pines and 
hardwood/mixed work better through support 
vector machine classifiers than through multi-
variate linear regression. To train and test the 
support vector machine classifier, Zhao et al. 
(2011) randomly select two samples of 5000 
pixels at a 20 m resolution, being the class la-
bels of these pixels indirectly obtained from 
the Quickbird-derived classification map by 
aggregating it from a resolution of 2.5 m to 20 

m. Over 50 runs, after the fifth, support vector 
machine consistently outperformed multivar-
iate linear regression with an averaged over-
all accuracy of 80.68% for multivariate linear 
regression versus 82.27 % for support vector 
machine. These values are clearly higher than 
those obtained in the study discussed here, but 
Zhao et al. (2011) discriminated just between 
young pine stands and forest stands character-
ized by relatively complex structure.
 Chirici et al. (2013) attempted to classify 
nine forest fuel types in the Mediterranean 
province of Palermo and Catania (Italy) pre-
viously observed and identified by photo in-
terpretation. They applied the random forest 
technique using thirty-one ALS-based metrics 
calculated from the normalized height returns 
in conjunction with an IRS LISS-III image. 
The overall accuracy obtained through this 
technique was 45%, lower than those obtained 
in our study.
 Torresan et al. (2014) evaluated two ap-
proaches to predict twelve forest structure 
classes according to the amount of basal area 
present in understory, midstory, and overstory 
trees: in the first, supervised classification with 
both linear discriminant analysis and random 
forest were attempted; in the second, predic-
tion of basal areas of  lower, mid, and upper 
canopy trees from CHM-derived variables by 
k-nearest neighbour imputation and paramet-
ric regression were conducted to then classi-
fied the observations based on their predicted 
basal areas. The level of user’s accuracy of the 
random forest (a learning method) ranged be-
tween 31% and 62%, which are levels lower 
than those obtained by the classification tree 
model of this study.
 With regard to the LiDAR variables selected 
by learning machine approaches, as Görgens 
et al. (2015a) reported, when the process of 
selecting and reducing variables is automated, 
the metrics chosen might not rely on biolog-
ical assumptions and often differ completely 
between studies.
 For example, referring to the two studies 
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mentioned above, Zhao et al. (2011) used the 
canopy density and quantile height to produce 
a hybrid form of LiDAR composite metric as 
predictors, while Chirici et al. (2013) estab-
lished canopy cover (defined as the percent 
of non-ground returns) as the most relevant 
metric and other relevant metrics included 
the spectral information from IRS and several 
other ALS metrics such as percentiles of the 
height distribution, the mean height of all re-
turns, and the number of returns.
Conversely, the classification tree model devel-
oped in our study, among the original eighteen 
variables, it selected five variables: standard 
deviation and mode of canopy heights, height 
at which 95% and 99% of canopy heights fall 
below, difference between height at which 
90% and 10% of canopy heights fall below.
This confirm Görgens et al. (2015b) findings 
about the specificity of LiDAR metrics as 
predictors and the need of identifying stable 
metrics derived from ALS data to be used as 
independent variable in specific models.
 Classification trees are useful tools with a 
simple structure, that is with low number of 
rules and final nodes. In these cases the clas-
sification tree constitutes a practical and par-
simonious tool for classification of stands for 
management or planning. The obtained classi-
fication tree model is clearly and easily inter-
pretable, so that forest technicians can feasibly 
use it under operational contexts. The model 
established here provides moderately satis-
factory results in term of classification perfor-
mance. We are aware that a misclassification 
error around 46% in the validation set is still 
not trusted for practical decision making pur-
poses, but it is reasonably acceptable when 
the model is used for preliminary analysis in 
the context of forest inventory processes that 
may require the recognition of forest structural 
types for stratification.

Conclusions

A proper understanding of forest structure is 

one of the keys to the sustainable management 
of forests. The description and mapping of for-
est structure are important aspects for forest 
inventory purposes (e.g. in the stratification 
process of a forest estate), for individualization 
of silvicultural interventions needed to achieve 
a diversified landscape, to drive a specific for-
est structure toward desired conditions, for 
addressing habitat management according to 
wildlife animals species needs, etc.
 Forest technicians often deal with process-
es of discrimination between different types 
of forest structures for forests management 
purposes. Activities, such as photo interpreta-
tion or fieldwork, traditionally used for forest 
structure interpretation are time-consuming 
and expensive. Although remote sensing is not 
expected to replace completely field measure-
ment any time in the near future (McRoberts & 
Tomppo 2007) it would facilitate planning and 
management with realistic goals.
 Our study demonstrated that in the consid-
erably mountainous forests LiDAR data and 
classification trees modelling would be useful 
and affordable for assisting in the classification 
of forest structure types, though caution is re-
quired to deal with inherent modelling uncer-
tainties.
 Our study represents the first contribution 
in the context of forest management in Italian 
Alps to the process of forest structure types dis-
crimination using airborne laser scanner data. 
Substantial room for improvement is expected 
by coupling multi- or hyperspectral imagery, 
which this offers extensive spatial and spec-
tral coverage of measurements and represents 
an ideal tool for forest mapping at provincial 
scale. As Dalponte et al. (2009) pointed out, 
remote sensing hyperspectral sensors are im-
portant and powerful instruments for address-
ing classification problems in complex forests, 
due to the obtainable detailed characterization 
of the spectral behaviour of the forest structure 
types. Therefore, future studies could investi-
gate the potential of the integration of hyper-
spectral and LiDAR data on the accuracy of 
classification trees and other machine learning 
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techniques in the forest structure classification.
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