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Abstract. The paper presents the production and allocation of aboveground 
biomass in 7-yr-old saplings of European beech (Fagus sylvatica L.) growing 
along an environmental gradient with a total light transmittance (Tot) ranging 
from 6% to 80%. Non-overtopped individuals, not suppressed by surrounding 
saplings were sampled at the end of growing season. The total aboveground 
biomass production on the gradient varied within 1.7-261.0. Light in the 
log-log linear relationship accounted for 83% of this variability. The plants 
growing in the shade had lower mass of aboveground compartments, lower 
total leaf area, higher fraction of biomass allocated in foliar mass and lower 
in the in the woody mass compared to the plants growing in the high-light 
environment. The major changes in effects of light availability on biomass 
allocation occurred up to about 20% of Tot. Decreasing accessible light was 
responsible for a non-linear increase in interceptive leaf area per unit of bio-
mass and decrease in amount of biomass allocated per a unit of branch and 
stem length – necessary for leaf display. There was a close correlation between 
mass of aboveground plant compartments, documented by Pearson’s r values 
of 0.98-0.99. Accompanied with different plant size, observed differences in 
biomass partitioning in response to light could be viewed as plastic adjust-
ment to environmental heterogeneity in even-aged European beech saplings.
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Introduction

The lack of light in understorey of tree com-

munities has significant impact on the per-
formance of woody plants growing in the 
understorey, by reducing their growth and sur-
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vival rate (e.g., Pearcy 2007, Jarčuška 2009), 
and thus influencing the dynamics of the whole 
community. Plants cope with limited light sup-
ply through adapting a range of their traits at 
all levels of biological organization, from leaf 
to the whole plant, a faculty that is backed-up 
phylogeneticaly and ontogeneticaly (Valla-
dares & Niinemets 2008).
 The morphological, anatomical and physi-
ological (biochemical) functional adaptive 
responses to decreasing light availability in 
shade-tolerant European beech (Fagus syl-
vatica L.) natural regeneration at the leaf level 
are well studied: an increase in the specific 
leaf area (leaf area per dry weight, cm2g-1), 
the shade leaves showing bigger leaf area, a 
lower stomatal density, a lower chlorophyll 
a/b ratios, higher chlorophyll amounts on dry 
weight basis, therefore, the shade leaves are 
much better adapted to the dynamical light en-
vironment (sunflecks) in the forest understorey 
(Lichtenthaler et al. 1981, Eschrich et al. 1989, 
Küppers & Schneider 1993, Aranda et al. 2001, 
Valladares et al. 2002). Juvenile trees growing 
in forest understorey respond to shading by 
increasing their lateral growth at the cost of 
height increments at the crown level (Stănciou 
& O’Hara 2006). Also, their leaf phenology 
is different from that of the adult trees (Barna 
et al. 2009).  The adjustment of plant traits to 
different environmental conditions, referred as 
phenotypic plasticity, is a means to cope with 
environmental heterogeneity. These plastic 
responses, spanning from chloroplast to the 
whole plant, enhance the light capture and the 
photosynthetic utilization and, consequently, 
increasing plant performance in the shade 
(Valladares & Niinemets 2008).
 In the case of the whole-plant response to 
light availability in 1-2 years old seedlings 
and saplings, the response to shading was a 
decrease of the plant biomass production (van 
Hees 1997). However, regarding the biomass 
allocation in individual plant parts, probably 
due to different methodical approaches and 
different light levels used in thier studies, the 

studies presents different results (van Hees 
1997, van Hees & Clerkx 2003, Ammer 2003, 
compared with Welander & Ottosson 1998, 
Valladares et al. 2002, and Löf et al. 2005). The 
researches comparing older individuals (old 
4–8 yrs) confirm a shift in biomass allocation 
and, on the other hand, they concern individu-
als not growing all the time in the same/similar 
light conditions (Curt et al. 2005, Prévosto & 
Balandier 2007, Hofmann & Ammer 2008). 
 According to optimal allocation theory 
(cf. Bloom et al. 1985), it could be expected 
that saplings growing under low light supply 
should increase their leaf mass fraction and 
leaf area per total aerial mass ratio, compared 
to the ones growing under higher light levels. 
The aim of this study is therefore to compare 
the production and allocation of aboveground 
biomass in naturally regenerated even-aged 
beech saplings growing - all the time - under 
relatively unchanged conditions, on a wide 
sunlight gradient.

 
Material and methods

Study plots 

The individuals for biomass analysis were 
sampled from two stands, located in the central 
part of the Western Carpathians, Slovakia: the 
Javorie Mountains (J hereafter, 48°30´13˝N, 
19°15´06˝E), and the Nízke Tatry Mountains 
(NT hereafter, 48°51´36˝N, 19°25´38˝E). The 
stands are situated at 680-740 m a.s.l., on Dys-
tric Cambisols (FAO, 2011). The mean annual 
temperature ranged between 6-7 °C, while the 
mean annual precipitation (2001-2008) was 
876 ± 130 mm (J) and 844 ± 171 mm (NT) 
(mean ± S.D., data from the Slovak Hydrom-
eteorological Institute, Bratislava).
 The canopy layer of the stands consists most-
ly of European beech (proportion more than 
70%). In both stands, allochtonous Norway 
spruce (Picea abies (L.) Karst.) is admixed, 
while in NT also European silver fir (Abies 
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alba Mill.), sycamore maple (Acer pseudopla-
tanus L.) and European ash (Fraxinus excel-
sior L.). The diverse patterns of solar radiation 
in these localities have been formed randomly, 
by windthrows (gaps of various size, created 
in summer 2001) and forest management prac-
tices (clear-cut, applied at the same time); 
more details are available in Jarčuška & Barna 
(2011). 

Plant material and biomass analysis 

The study material (J - 24 individuals, NT – 20 
and 44 individuals) was sampled randomly individuals) was sampled randomly) was sampled randomly 
from 7 years old, naturally regenerated, un-
damaged individuals growing under broad 
light gradient and showing no symptoms of at-
tack by pathogens. Seven years old individuals 
were sampled after survey of beech natural re-
generation presented in the understorey (in the 
sapling layer) of the stands, as it was the most 
common age cohort within the natural regener-
ation. The tree age was identified by counting 
bud-scars on the main stem and on the lowest 
vital branch and on the remaining stem part 
(Jarčuška & Barna 2011). We selected only the 
individuals non-overtopped, not suppressed by 
surrounding saplings. The sampling was car-
ried out at the end of growing season, in Sep-
tember 2008. 
 All the trees were measured for tree height, 
stem length, and stem diameter at the base 
(average of two measurements mutually per-
pendicular) before harvesting. The leaf area 
was determined based on leaves selected ran-
domly by ten from each sample tree (by five 
from each crown half), vhich were placed in 
plastic bags in an ice box and transported to 
the laboratory. Leaf area of ten sampled leaves 
was measured with a LI-3000A Portable Area 
Meter (LiCor, USA). The total length of tree 
branches and the number of leaves were deter-
mined in the lab. The dry biomass of all beech 
saplings was specified according to the frac-
tions of branches, leaves and main stems, with 
a precision of ± 0.001 g, after drying at 70°C to 

a constant mass. Foliar area in the mid-crown 
was calculated by multiplying the dry mass 
of leaves with specific leaf area (leaf area to 
its dry weight ratio, SLA hereafter) of the five 
leaves sampled in the half part of crown. Then, 
the leaf areas of the both crown halves were 
added together, to obtain the total leaf area per 
tree. The mean leaf area was calculated as the 
ratio of the total leaf area to the leaf number.

Light conditions 

For all saplings, hemispherical photos were 
taken at level of the leading shoot. The pho-
tograps were done under uniform cloudy sky 
conditions, in summer 2008. Underexposed 
images (-2 steps of exposure values) were ob-
tained with using a Canon EOS 400D (Canon, 
Ōta, Tokyo, Japan), using a lens with a view 
angle of 180° (so called “fish-eye”)(Sigma 4.5 
mm F2.8 EX DC - Sigma, Bandai, Fukushima, 
Japan). The threshold level (separation of the 
black/white pixels) was determined for each 
photo separately, using the blue colour channel 
and the automatic algorithm of Nobis & Hun-
ziker (2005), as implemented  in SideLook 1.1 
software (Nobis 2005). For the captured im-
ages, the relative amount of the total solar ra-
diation transmitted through the crown canopy 
(Tot hereafter) was computed with Gap Light 
Analyser 2.0 (GLA, Frazer et al. 1999), know-
ing the setting rules (more details in Jarčuška 
2011a).

Data analysis

The effect of light on aboveground biomass 
production and allocation in beech saplings in 
their seventh growth season was assessed by 
simple linear and nonlinear Model I. In regres-
sion analyses, the per cent of the total trans-
mitted light (Tot) was used as an independent 
variable, while other variables - the total bio-
mass, biomass of leaves, branches, stem, the 
fractions of leaves, branches, stem, and wood 
(branches + stem) mass in % of total aboveg-



154

Ann. For. Res. 54(2): 151-160, 2011                                                                                                                      Research article

round biomass as  dependent ones. Differ-
ences between the slopes of regression lines, 
expressing relationship between weight of all 
plant compartments and light amounts, were 
tested by the interaction term in the General 
Linear Model. If there were not found signifi-
cant differences among the aboveground plant 
compartments, we tested for further differ-
ences among the plant compartments – using 
the analysis of covariance (with compartments 
as the main factor and light availability as the 
covariate). If necessary, log10-transforma-
tion was used in order to meet conditions of 
normality (Shapiro-Wilk test), homoscedas-
ticity and linearity (Sokal & Rohlf 1995) and 
Pearson product-moment correlation was used 
to evaluate the association between the Tot 
and other measured/calculated variables. The 
probability values less than 0.05 being were 
considered as significant. For all the analysis 

it was used Statistica 6.0 (Statsoft Inc., Tulsa,(Statsoft Inc., Tulsa, 
Oklahoma, USA).

Results

The studied trees were supplied with about 5 
to 80% of the total sunlight (Figs 1–4). There 
were identified more than 150-fold differences 
in the total aboveground biomass between the 
individuals (ranging from 1.72 g to 260.96 g) 
in the concerned light conditions. While bio-
mass of stem and branches across the light 
gradient varied more than 200 and 330-fold, 
respectively, the leaf biomass only about 70 
times (Table 1). The light explained 76 to 84% 
of this variation (Figure 1). The total intercep-
tive leaf area ranged between 280 and 9610 
cm2, the total branch length from 18 cm to 
11.22 m, and number of leaves from 23 to 725 

Variables* Mean S.D. Minimum Maximum Max/min Coef. var.
Tot % 21.64 19.61 5.92 82.35 13.91 90.66
TM g 37.56 56.89 1.72 260.960 151.37 151.49
SM g 22.82 35.87 0.77 159.70 207.13 157.23
BM g 7.40 11.34 0.16 54.15 334.28 153.25
LM g 7.34 9.87 0.66 47.11 71.94 134.45
SF % 58.05 5.47 44.72 67.75 1.52 9.43
BF % 17.69 4.38 7.96 26.71 3.35 24.77
LF % 24.25 5.94 15.55 43.85 2.82 24.49
D mm 9.9 4.8 3.8 24.5 6.45 48.14
L cm 92.5 41.1 28.5 203.2 7.13 44.35
BL cm 270.5 249.2 18.0 1122.5 62.36 92.13
TLA cm2 2092.74 2148.20 279.75 9607.29 34.34 102.65
LN pcs. 185.68 176.90 23.00 725.00 31.52 95.27
MLA cm2 11.14 2.02 7.64 15.48 2.03 18.10
SLA cm2 g-1 363.61 78.70 181.20 510.47 2.82 21.64

Table 1 Descriptive statistics for the variables of interest measured in 7-yr-old Fagus sylvatica saplings  
              (n = 44). Abbreviations: (S.D.) standard deviation, (max/min) maximum/ minimum ratio, and  
              (coef. var.) coefficient of variance

*Abbreviations: Tot – relative total irradiation, TM – total aboveground biomass, SM – stem biomass, BM – branch bio-
mass, LM – leaf biomass, SF – stem fraction, BF – branch fraction, LF – leaf fraction, D – stem diameter, L – stem length, 
BL – total branch length, TLA – total leaf area, LN - leaf number,  MLA – mean leaf area, SLA – specific leaf area
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pcs (Table 1). 
 The amount of aboveground biomass al-
located in leaves (i.e. leaf fraction) shows a 
quadratic nonlinear decrease in response to 
light – explaining 67% of leaf mass variability. 
In the case of stem and branch fraction, light 
does not explain more than 23% for each (Fi-
gure 2), after pooling of wood biomass, how-
ever, solar radiation accounted for 62% of its 
variability (data not shown). The relationship 
between the light availability and aboveground 
biomass fractions loses its statistical signifi-
cance at  20% of the total sunlight (Figure 2).
The values of leaf area ratio, i.e. the ratio of 
leaf area to total aboveground biomass (LAR, 
Figure 3), ranged from 31.45 to 186.29 cm2 per 
g of aboveground biomass (Table 1). LAR de-
creased with increasing light which accounted 
for 79% of variable’s variance. 
 The amount of biomass necessary for crea-
tion a unit length in branches bearing intercep-
tive leaf area decreased with decreasing light 
accessibility (Figure 4A). Therefore, shaded 
individuals could bear more leaf mass per 

shoot mass unit compared to sunny ones. Stem 
mass to stem length ratio showed the same, 
negative nonlinear relationship with accessible 
light (Figure 4B).
 Light had a strong impact on most of the 
measured variables, its influence was less pro-
nounced only at the mean leaf area (MLA, Ta-
ble 2). MLA correlated significantly only with 
the total leaf area. All aboveground plant mass 
compartments correlated very strongly – their 
Pearson’s r reached 0.98-0.99. Total leaf area 
had the strongest degree of correlation with leaf 
mass. Stem diameter correlated most with the 
total and leaf biomass, and with branch length. 
In overall, stem diameter correlated stronger 
than stem length with other variables (Table 2).

Disscussion

Light is one of principal resources for plant 
survival and growth, therefore the existence of 
plant species in an environment with varying 
light supply depends either on their speciali-

Figure 1  Relationship between the relative total solar radiation and stem (log y = -1.005 + 1.650 log x,  
                  adjusted R2 = 0.84, P < 0.001), leaves (log y = -1.040 + 1.355 log x, adjusted R2 = 0.83, P <  
                  0.001), branches (log y = -1.643 + 1.739 log x, adjusted R2 = 0.76, P < 0.001), and total above- 
                  ground biomass (log y = -0.695 + 1.590 log x, adjusted R2 = 0.83, P < 0.001) of 7-yr-old sap 
                  lings. The slope coefficients of regression lines are not significantly different (P = 0.13), the in- 
                  tercepts are (P < 0.05, Tukey HSD test)
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zation to different light conditions or on their 
ability to adapt their phenotypes to the current 
situation (Valladares 2000, Valladares & Ni-
inemets 2008). 
 The negative effect of reduced light avail-
ability on growth/size of young beech individu-

als observed in the present study is well known 
(van Hees 1997, Löf et al. 2005, Balandier et al. 
2007). Besides the length growth of the main 
axis and/or total biomass size, reduced light 
influenced allocation of biomass into plant’s 
compartments – branches, leaves and stem (Ta-

Figure 2 Relationship between the relative total solar radiation and stem fraction (log y = 60.3146 –  
  93.6576/(1– 0.0121 x)1/-0.0346, adjusted R2 = 0.23, P < 0.003), leaf fraction (log y = 1.2647 +  
  0.7378/x + 6.1892/x2, adjusted R2 = 0.67, P < 0.001), and branch fraction (log y = 1.2765 (1 
  - exp0.3259x), adjusted R2 = 0.16, P < 0.004) of aboveground biomass of 7-yr-old saplings. The  
  figure presents untransformed variable to illustrate better the observed pattern.

Figure 3 Relationship between the relative total solar radiation and leaf area to the total aboveground dry  
  mass ratio (log y = 1.5785 + 5.9411/x – 14.8309/x2, adjusted R2 = 0.79, P < 0.0001) in 7-yrs old  
  saplings. The inset demonstrates the relationship between the total solar radiation and leaf area  
  ratio for saplings growing at the lowest light level (log y = 2.5210 – 0.0543x, n = 18, adjusted  
  R2 = 0.40, P < 0.003). The figure presents untransformed variable to illustrate better the ob- 
  served pattern.
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ble 1). The observed effect of light on biomass 
partitioning within plants is in accordance with 
observations of other authors. Poorter & Nagel 
(2000) in their review 130 mentioned observa-
tions from 40 publications, Dezzotti (2008) for 
three Nothofagus species, Gleason et al. (2011) 
for seedlings of five Australian rain-forest spe-

cies, or Löf et al. (2005) in beech seedlings 
and Prévosto & Balandier (2007) in 5-years 
old beech saplings. On the other hand, Curt et 
al. (2005) found significant effect of light in 
four years old beech saplings after two years 
of treatment only for leaf fraction, while Pré-
vosto & Balandier (2007) observed lower vari-

Figure 4 Relationship between the relative total solar radiation and (A) total branch length to branch dry  
  mass ratio (log y = 2.0793 – 0.0184x + 0.0001x2, adjusted R2 = 0.80, P < 0.0001), and (B) stem  
  length to stem dry mass ratio (log y = 0.1552 + 14.4238/x – 42.0815/x2, adjusted R2 = 0.82, P <  
  0.0001) in 7-yrs old saplings. The figures present untransformed variables to illustrate better the  
  observed pattern

Table 2 Pearson correlation matrix for 7-yr-old Fagus sapling biomass and other measured variables

Variables TM SM BM LM D L BL TLA LN MLA SLA

Tot 0.91 0.90 0.92 0.91 0.92 0.81 0.89 0.89 0.83 0.35 -0.79
TM 0.99 0.99 0.99 0.94 0.83 0.93 0.95 0.92 0.27 -0.75
SM - 0.98 0.99 0.93 0.83 0.91 0.94 0.91 0.28 -0.74
BM - - 0.99 0.93 0.82 0.95 0.95 0.92 0.26 -0.75
LM - - - 0.94 0.84 0.94 0.96 0.94 0.25 -0.76
D - - - - 0.91 0.94 0.93 0.91 0.25 -0.80
L - - - - - 0.90 0.87 0.89 0.22 -0.76
BL - - - - - - 0.94 0.95 0.18 -0.78
TLA - - - - - - - 0.94 0.33 -0.70
LN - - - - - - - - 0.07 -0.76
MLA - - - - - - - - - -0.04

Abbreviations: Tot – relative total irradiation, TM – total aboveground biomass, SM – stem biomass, BM – branch bio-
mass, LM – leaf biomass, D – stem diameter, L – stem length, BL – total branch length, TLA – total leaf area, LN - leaf 
number,  MLA – mean leaf area, SLA – specific leaf area. Correlations significant at P < 0.001 are shown in bold, and P 
< 0.05 in bold-italic. The other values are not statistically significant (P > 0.05).
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ability in leaf area ratio (LAR) in response to 
light in 5 years old saplings and lower amount 
of explained variability in LAR compared to 
our findings. These discrepancies could be ex-
plained by transplanting shock (Ammer 2007), 
previous growth conditions (Eschrich et al. 
1989), as they used it were seedlings grown in 
a nursery, and also by the short-term duration 
of experiment (Curt et al. 2005; Prévosto & 
Balandier 2007). 
 Light explained between 84% of total 
aboveground biomass variance (Figure 1) and 
from 16 to 67% of aboveground biomass frac-
tions’ variability (Figure 2). Hofmann & Am-
mer (2008) observed 80% of total woody mass 
(above- and belowground) variation explained 
by light availability (PAR). They also reported 
60% of branch fraction variability explained 
by total dry woody mass of beech individu-
als and non-significant relation between stem 
fraction and total woody mass. The relation-
ship between the light availability and above-    
ground biomass fractions loses its statistical 
significance at about 20% of the total sunlight 
(Figure 2). Light availability well below 40% 
of accessible light is presented as an upper 
threshold for height growth (Jarčuška 2009). 
 While fluctuations in leaf fraction for the 
given light gradient were almost 3-fold, there 
were 6-fold in LAR. Higher LAR found in tree 
seedlings and saplings under low light condi-
tions are interpreted as mechanisms improv-
ing their light capture (Poorter & Nagel 2000, 
King 2003),  primarily thanks to a bigger spe-
cific leaf area (SLA, Table 2) and larger leaf 
fraction (Figure 2). In such a way, the leaf area 
displayed per unit of leaf biomass  reaches its 
maximum.
 Plastic allocation of metabolic products to 
different plant compartments, expressing the 
response of regenerating trees to uneven light 
availability, is considered as an important fac-
tor allowing plants to survive in shade, while 
increasing their extension rates and competi-
tive ability in sun (King 2003). Similar role 
like the plasticity in biomass allocation within 

plant’s compartments serve also to the changes 
in plant physiology, phenology, and morphol-
ogy, at different levels of organization (e.g., 
Arranda et al. 2001, Valladares et al. 2002, 
Curt et al. 2005, Barna et al. 2009). Phenoty-
pic plasticity of ecologically important traits, 
in response to different environments, is the 
fundamental property of the organisms, en-
abling them to cope with adverse environmen-
tal conditions (Sultan 2000). 
 In generall, the findings of the present study 
are in accordance with previous observa-
tions (e. g., Valladares et al. 2002, Löf et al. 
2005): decreased light availability increases 
biomass allocation into leaves, as light captur-
ing structures, at the cost of woody biomass. 
Hofmann & Ammer (2008) considered a shift 
in biomass distribution in even-aged plants 
as a result, mainly, of the plant size, i.e., to-
tal woody mass (see above). Conclusions of 
Prévosto & Balandier (2007) are similar in the 
case of ratio of leaf area to total aboveground 
mass (LAR). Also, Konôpka et al. (2010) ex-
plained the large intra-specific variability in 
biomass allocation within beech trees under 
10-yrs old as a function of their diameter size, 
however, they did not take a possible differ-
ences in growth history of sampled trees’ light 
environment among stands into account (cf. 
Jarčuška & Barna 2011). However, it is not 
possible to separate the size-effect from the ef-
fect of light in even-aged individuals, because 
their size is dependent on and therefore cor-
related with light availability (see Table 2). In 
other words, to speak about changes in plant 
biomass allocation, in response to light, as the 
plastic autcome requires sorting the effect of 
plant size from the effect of light. If the differ-
ences in biomass allocation disappear after ap-
plication of the allometric analysis, it could be 
concluded that the difference in allocation was 
due to size difference (Poorter & Nagel 2000). 
This phenomenon has been called ‘apparent 
plasticity’ (Weiner 2004). As Poorter & Nagel 
(2000) pointed out, it is not correct to consider 
that differences in biomass allocation are only 



159

Jarčuška & Barna                                                             Plasticity in above-ground biomass allocation in Fagus sylvatica L. ... 

of interest if they exist at a common plant size 
– to understand the functioning of a plant in 
its environment, then it is actual allocation of 
biomass along with the actual physiology and 
morphology that determines a performance 
of the plant at that moment (Poorter & Nagel 
2000). Besides, they reported for 130 obser-130 obser-
vations (from 40 publications) that light andthat light and 
size affect aboveground biomass distribution 
interactively. Similarly, Claveau et al. (2005) 
demonstrated allocational effect of interaction 
between light and size based on example of 
saplings of evergreen boreal and sub-boreal 
species. 

Conclusion

Seven year-old beech saplings growing in 
shade (< 20% of light) had lower mass of 
aboveground compartments, lower total leaf 
area, higher fraction of biomass allocated 
in foliar mass and lower in the woody mass, 
compared to plants growing in the high-light 
environment. With decreasing light supply, in-
terceptive leaf area per unit of biomass showed 
a non-linear increase, and the amount of bio-
mass of branches and stems necessary for leaf 
display decreased. With increasing growth of 
an individual, increases the ratio of non-pho-
tosynthetic to photosynthetic tissues ratio, en-
tailing increase in respiration costs, responded 
by more light requirements of plants. Accom-
panied with different plant size, observed dif-
ferences in biomass partitioning in response to 
light could be viewed as a plastic adjustment to 
the environmental heterogeneity in even-aged 
European beech saplings. Additional research 
is needed to answer the questions concerning 
the concurrent influence of growth and on-
togenesis on the biomass allocation in beech 
natural regeneration affected by light avail-
ability.
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