The water absorbability of beech (Fagus sylvatica l.) and fir (Abies alba mill.) organic matter in the forest floor

Authors

  • Anna Ilek Poznań University of Life Sciences, Department of Forest Sites and Ecology
  • Małgorzata Szostek Department of Soil Science, Environment Chemistry and Hydrology, University of Rzeszow, ul. Ćwiklińskiej 2/D3, 35-601 Rzeszow, Poland
  • Jarosław Kucza Department of Forest Engineering, Institute of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
  • Jadwiga Stanek-Tarkowska Department of Soil Science, Environment Chemistry and Hydrology, University of Rzeszow, ul. Ćwiklińskiej 2/D3, 35-601 Rzeszow, Poland
  • Wojciech Witek Department of Forest Engineering, Institute of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland

DOI:

https://doi.org/10.15287/afr.2018.1161

Keywords:

forest hydrology, forest soils, water absorbability, organic matter, Fagus sylvatica L., Abies alba Mill.

Abstract

The organic horizons of forest soils are characterised by double capillarity: between particles and inside them. It has been hypothesized that the time required to fill the internal capillarity of organic particles depends on their botanical origin and the degree of their decomposition. The aim of the present study is to determine the time of water absorption by organic matter that is part of the Ol and Ofh horizons of selected beech (Fagus sylvatica L.) and fir (Abies alba Mill.) stands. The present research on water absorbability lasted for 14 days and consisted in measuring the absorption time in organic particles from the moment of immersion of an air-dry sample in water until the particles soaked in water exceeded the density of 1.0 g·cm-3.  It was found that in fir organic matter the time of water absorption decreases with the advancement of decomposition. In beech stands, progressing decomposition processes result in a longer water absorption time. The dynamics of water absorption of organic matter indicates that no single rainfall is able to entirely fill the internal capillarity of organic particles, whereby the organic horizons of forest soils can maintain the ability to retain water even in long-term rainfall.

References

Bačić T., Krstin L., Roša J., Popović Ž., 2005. Epicuticular wax on stomata of damaged silver fir trees (Abies alba Mill.). Acta Societatis Botanicorum Poloniae 74(2):159-166. DOI: 10.5586/asbp.2005.021Berg B., McClaugherty C., 2008. Plant litter – decomposition, humus formation, carbon sequestration. Springer-Verlag, Berlin, Germany, pp. 11-34.Boratyński A, 1983. Systematyka i geograficzne rozmieszczenie. In: Białobok S. (ed.), Jodła pospolita Abies alba Mill. [Systematics and geographical distribution. In: Białobok S. (ed.), Silver fir Abies alba Mill.]Nasze drzewa leśne 4. PWN, Warszawa-Poznań, pp. 41-85Chen S., Cao T., Tanaka N., Gao T., Zhu L., Zou C.B., 2018. Hydrological properties of litter layers in mixed forests in Mt. Qinling, China. iForest 11: 243-250. DOI: 10.3832/ifor2535-011Cho S.H., Jeong K.S., Kim S.H., Pak J.H., 2014. Leaf cuticle micromorphology of Fagus L. (Fagaceae) species. Journal of Asia-Pacific Biodiversity 7: 378-387. DOI: 10.1016/j.japb.2014.10.002Denk T., 2003. Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Systematics and Evolution 240: 55-81.DOI: 10.1007/s00606-003-0018-xDziadowiec H., Pokojska U., Prusinkiewicz Z., 2004. Materia organiczna, koloidy i roztwór glebowy jako przedmiot badań specjalistycznych. In: Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z. (eds.) Badania ekologiczno-gleboznawcze [Organic matter, colloids and soil solution as a subject of specialist research. In: Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z. (eds.) Ecological and soil science research]. Wydawnictwo Naukowe PWN, Warszawa, pp. 113-246Fioretto A., Di Nardo C., Papa S., Fuggi A., 2005. Lignin and cellulose degradation and nitrogen dynamics during decomposition of three leaf litter species in a Mediterranean ecosystem. Soil Biology and Biochemistry 37(6): 1083-1091. DOI: 10.1016/j.soilbio.2004.11.007Fogel R., Cromack K., 1977. Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Canadian Journal of Botany 55(12): 1632-1640. DOI: 10.1139/b77-190Franich R.A., Wells L.G., Barnett J.R., 1977. Variation with tree age of needle cuticle topography and stomatal structure in Pinus radiate D. Don. Annals of Botany 41(3): 621-626. DOI: 10.1093/oxfordjournals.aob.a085331Gołąb Z., 1978. Chemical changes occurring in beech and hornbeam leaves in their decomposition course in natural conditions. Soil Science Annual 29: 31-41.Greiffenhagen A., Wessolek G., Facklam M., Renger M., Stoffregen H., 2006. Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma 132: 182-195. DOI: 10.1016/j.geoderma.2005.05.006Hejnowicz Z., 2002. Anatomy and histogenesis of vascular plants. Vegetative organs. Wyd. Naukowe PWN, Warszawa, pp. 205-320.Hobbie S.E., Reich P.B., Oleksyn J., Ogdahl M., Zytkowiak R., Hale C., Karolewski P., 2006. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87(9): 2288-2297. DOI: 10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2Ilek A., Kucza J., Szostek M., 2015. The effect of stand species composition on water storage capacity of the organic layers of forest soils. European Journal of Forest Research 134: 187-197. DOI: 10.1007/s10342-014-0842-2Ilek A., Kucza J., Szostek M., 2017. The effect of the bulk density and the decomposition index of organic matter on the water storage capacity of the surface layers of forest soils. Geoderma 285: 27-34. DOI: 10.1016/j.geoderma.2016.09.025IUSS Working Group WRB, 2015. World Reference Base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. Update 2015. World Soil Resources Reports 106. FAO, Rome.Jacob M., Viedenz K., Polle A., Thomas F.M., 2010. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164(4): 1083-1094. DOI: 10.1007/s00442-010-1699-9Jonczak J., 2013. Dynamics, structure and properties of plant litterfall in a 120-year old beech stand in Middle Pomerania between 2007-2010. Soil Science Annual 64(1): 8-13. DOI: 10.2478/ssa-2013-0002Klamerus-Iwan A., Błońska E., 2017. Seasonal variability of interception and water wettability of common oak leaves. Annals of Forest Research 60(1): 63-73. DOI: 10.15287/afr.2016.706Klamerus-Iwan A., Kraj W., 2017. Wettability and interception in relationship with the seasonal changes on the Fagus sylvatica leaf surface. Forest Research Papers 78(3): 210-217. DOI:10.1515/frp-2017-0023Kucza J., 2007. Właściwości hydrologiczne materii organicznej gleb leśnych na przykładzie gleb pod świerczynami istebniańskimi [Hydrological properties of organic matter of forest soils on the example of soils under Norway spruce stands]. Zeszyty NaukoweAkademii Rolniczej w Krakowie, Ser Rozpr 442, pp. 44-65Kucza J., Urbaś J., 2005. Water absorption of organic matter taken from horizons of ectohumus of forest soils under Norway spruce stands. EJPAU Forestry 8(4): 50-58.Laurén A., Mannerkoski H., 2001. Hydraulic properties of mor layers in Finland. Scandinavian Journal of Forest Research 16: 429-441. DOI: 10.1080/02827580152632829Malinowski E., 1987. Anatomia roślin [Plant anatomy].Wydawnictwo Naukowe PWN, Warszawa, pp. 63-84Małek S., 2006. Struktura i dynamika opadu organicznego w drzewostanie bukowym na powierzchni monitoringowej w Ojcowskim Parku Narodowym w latach 1995-20002000 [The structure and dynamic of litterfall in beech stand in Ojcowski National Park monitored area in 1995-2000]. Leśne Prace Badawcze 3: 71-82Małek S., Wężyk P., Neroj B., 1998. Struktura i dynamika opadu organicznego drzewostanu bukowego w różnych wariantach żyzności siedliska w Ojcowskim Parku Narodowym w latach 1995 i 1996 [The structure and dynamic of litterfall in beech stand in various habitat fertility variants in the Ojców National Park in 1995 and 1996]. Acta Agraria et Silvestria series Silvestris 36: 63-76Niewinna M., 2010. Litter fall and rate of decomposition in selected tree stands of the Bieszczady Mts. RocznikiBieszczadzkie 18: 59-73.Onda Y., Yukawa N., 1994. The influence of understories and litter layer on the infiltration of forested hillslopes. In: Proceedings of the International Symposium on Forest Hydrology. Tokyo, Japan, pp. 107-114.Putuhena W.M., Cordery I., 1996. Estimation of interception capacity of the forest floor. Journal of Hydrology 180: 283-299. DOI: 10.1016/0022-1694(95)02883-8Rutigliano F.A., De Santo A.V., Berg B., Alafani A., Fioretto A., 1996. Lignin decomposition in decaying leaves of Fagus sylvatica L. and needles of Abies alba Mill. Soil Biology and Biochemistry 28(1): 101- 106. DOI: 10.1016/0038-0717(95)00120-4Sharafatmandrad M., Bahremand A., Mesdaghi M., Barani H., 2010. The role of rainfall and light interception by litter on maintenance of surface soil water content in an arid rangeland (Khabr National Park, southeast of Iran). DESERT 15: 53-60.Schulze W.X., Gleixner G., Kaiser K., Guggenberger G., Mann M., Schulze E.D., 2005. A proteomic fingerprint of dissolved organic carbon and soil particles. Oecologia 142: 335-343. DOI: 10.1007/s00442-004-1698-9Suliński J., 1993. Modelowanie bilansu wodnego w wymianie między atmosferą, drzewostanem i gruntem przy użyciu kryteriów ekologicznych [Modelling of water balance in the exchange between atmosphere, stand and soil using ecological criteria]. Zeszyty Naukowe Akademii Rolniczej w Krakowie, Ser Rozpr 179, pp. 15-20Sweeney C.A., 2004. A key for identification of stomata of the native conifers of Scandinavia. Review of Palaeobotany and Palynology 128: 281-290. DOI: 10.1016/S0034-6667(03)00138-6Švidenko A.J., 1980. PichtovyelesaUkrainy [Fir forests of Ukraine]. Izdat. pri Lvov. Gosud. Univ Lvov., pp. 15-30Tamai K., Abe T., Araki M., Ito H., 1998. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest. Hydrological Processes 12: 2105-2114. DOI: 10.1002/(SICI)1099-1085(19981030)12:13/14<2105::AID-HYP723>3.0.CO;2-9Tomczuk R.I., 1975. Chemical composition of wood. Folia Forestalia Polonica Seria B 12: 5-14.Walsh R.P.D., Voigt P.J., 1977. Vegetation litter: an underestimated variable in hydrology and geomorphology. Journal of Biogeography 4: 253-274. DOI: 10.2307/3038060Zhang Z., Chen Y., Zhang Z., Cui H., Lei Y., Wang D., Sui J., 2006. Water-holding characteristics of litter in different forests at the Lianxiahe watershed. Frontiers of Forestry in China 4: 413-418. DOI: 10.1007/s11461-006-0046-0Zhang Z., Lei Y., Su K., Wang G., Wang D., Ma H., 2009. Hydrological characteristics of litter in different forest succession stages at Liuxihe Watershed, southern China Frontiers of Forestry in China 4(3): 317-322. DOI: 10.1007/s11461-009-0053-z

Downloads

Published

2019-06-13

Issue

Section

Research article