Research article

Genetic diversity of Norway spruce [Picea abies (L.) Karst.] in Romanian Carpathians

Raul Gheorghe Radu, Lucian Alexandru Curtu, Gheorghe Spârchez, Neculae Şofletea

Raul Gheorghe Radu
University of Transilvania Brasov, Dept. of Forest Sciences, Sirul Beethoven - 1, Brasov - 500 123, Romania
Lucian Alexandru Curtu
University of Transilvania Brasov, Dept. of Forest Sciences, Sirul Beethoven - 1, Brasov - 500 123, Romania
Gheorghe Spârchez
University of Transilvania Brasov, Dept. of Forest Sciences, Sirul Beethoven - 1, Brasov - 500 123, Romania
Neculae Şofletea
University of Transilvania Brasov, Dept. of Forest Sciences, Sirul Beethoven - 1, Brasov - 500 123, Romania. Email: nic.sofletea@unitbv.ro

Online First: April 17, 2014
Radu, R., Curtu, L., Spârchez, G., Şofletea, N. 2014. Genetic diversity of Norway spruce [Picea abies (L.) Karst.] in Romanian Carpathians. Annals of Forest Research DOI:10.15287/afr.2014.178


The genetic diversity of Romanian most important coniferous tree species, the Norway spruce, was estimated by means of allozyme markers. A total of 695 adult trees sampled from eleven populations grouped in six mountainous areas in the Romanian Carpathians were analyzed. In three metapopulations (Maramureş, Postăvar and Parâng), to evaluate the influence of altitudinal gradient on genetic diversity, samples were collected from populations located at high and low altitude. At other location (ApuseniMountains) we compared the narrow-crown biotype (Picea abies var. columnaris) and the pyramidal crown biotype (Picea abies var. pyramidalis) and explored the genetic structure of peat bog ecotype. By analyzing 7 enzyme systems and 12 enzyme coding loci, a total of 38 allelic variants have been detected. The mean value of polymorphic loci for the six sites was 86.1%, ranging between 83.3% and 91.7% and the mean expected heterozygosity was 0.115, resulting in a moderate level of genetic diversity. The highest genetic diversity (He = 0.134) was found in the narrow-crown spruce population. Apuseni metapopulation showed the highest genetic diversity (He = 0.125), being the most valuable for conservation of genetic resources. The small value of fixation index (FST = 0.009) indicates a low genetic differentiation between the six sites and AMOVA test revealed a very high level of genetic diversity within population (99%). Comparative analysis of genetic parameters showed small differences between high and low altitude populations at each site, probably due to the neutral character of the markers analyzed and the effect of gene flow between gradiental populations.


Ballian D., Bogunić F., Božič G., 2007. Genetic variability of Norway spruce (Picea abies (L.) Karst.) in the Bosnian part of the dinaric mountain range. Šumarski list 131(5-6): 237-246.

Bush R.M., Smouse P.E., 1992. Evidence for the adaptive significance of allozymes in forest trees. New Forests 6: 179-196. DOI: 10.1007/ BF00120644.

Crawford D.J., 1989. Enzyme electrophoresis and plant systematics. In: D. E. Soltis, P. S. Soltis [eds.]: Isozymes in plant biology 146-164, Dioscorides Press, Portland, Oregon, USA.

Curtu L.A., Şofletea N., Radu R., Bacea A., Abrudan I.V., Butiuk-Keul A., Farcas S., 2009. Allozyme variation of coniferous tree species fromMaramures Mountains,Romania. Notulae Botanicae Horti AgrobotaniciCluj-Napoca37(2): 245-251.

Dutcă I., Abrudan I.V., Stăncioiu P.T., 2010. Biomass conversion and expansion factors for young Norway spruce (Picea abies (L.) Karst.) Trees Planted on Non-Forest Lands inRomania. Notulae Botanicae Horti AgrobotaniciCluj-Napoca38 (2): 286-292.

Excoffier L., Laval G., Schneider S., 2005. Arlequin version 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47-50.

Feurdean A., TanţăuI., Fărcaş S., 2011. Holocene variability in the range distribution and abundance of Pinus, Picea abies, and Quercus in Romania; implications for their current status. Quaternary Science Reviews Volume 30 (21-22): 3060-3075. DOI: 10.1016/j.quascirev. 2011.07.005.

Geburek T., 1999. Genetic variation of Norway spruce (Picea abies (L.) Karst.) populations inAustria. Macrospatial aloozyme patterns of high elevation populations.ForestGenetics 6(3): 201-211.

Giannini R., Morgante M., Vendramin G.G., 1991. Allozyme variation in Italian populations of Picea abies (L.) Karst. Silvae Genetica 40 (3/4): 160-166.

Goncharenko G.G., Zadeika I.V., Birgelis J.J., 1995. Genetic structure, diversity and differentiation ofNorwayspruce (Picea abies (L.) Karst.) in natural populatins ofLatvia.ForestEcology and Management 72 1): 31-38.

Goudet J., 1995. FSTAT Version 1.2. A computer program to calculate F-statistics. Journal of Heredity 86 (6): 485-486.

Hamrick J.L, Godt M.J.V., Sherman-Broyles S.L., 1992. Factors influencing levels of genetic diversity in woody plant species. New Forest6(1-4): 95-124. DOI: 10.1007/BF00120641.

HanskiI., 1991. Metapopulation dynamics: grief history and conceptual domain. Biological Journal of Linnean Society 4: 3-16. DOI: 10.1111/j. 1095-8312.1991.tb00548.x.

Hogan C. M. 2011. Metapopulation. Retrieved from http://www.eoearth.org/view/article/171093.

Kalinowski S.T., 2004. Counting alleles with rarefaction: Private alleles and hierarchical sampling designs. Conservation Genetics 5(4): 539–543. DOI: 10.1023/B:COGE.0000041021.91777.1a.

Kannenberg N., Gross K., 1999. Allozymic variation in some Norway spruce populations of the international IUFRO provenance-testing Programe of 1964/1968. Silvae Genetica 48 (5): 209-217.

Konnert M., 1991. Vergleich der genetischen struktur verschiedener generationen zweier naturlich verjungter Fichtenbestande des Schwarzwaldes. Silvae Genetica 40(2): 60-65

Konnert M., Maurer, W., 2004. Isoenzymuntersuchungen bei Fichte (Picea abies). Anleitungen zur Trennmethodik und Auswertung der Zymogramme. [Instructions for separation methodology and analysis of the zimograms for Picea abies] Bayerrisches Amt fur forstiche Saat- und Pflanzenzucht: 1-22.

Konnert M., 2009. Genetic variation of Picea abies in southernGermanyas determined using isozyme and STS markers. 61 supplement: 131-136.

Korshikov I.I., Privalikhin S.N., 2007. Genetic Structure of Populations of Norway Spruce (Picea abies (L.) Karst.) from Ukrainian Carpathians. Russian Journal of Genetics 43(12): 1364-1372. DOI: 10.1134/S1022795407120058.

Krajmerová D., Longauer R., 2000. Genetická diverzita smreka obyčajného na Slovensku [Genetic diversity of Norway spruce inSlovakia]. Lesnícky Časopis 46(3): 273-286.

Kravchenko A.N., Larionova A.Ya., Milyutin L.I., 2008. Genetic polymorphism of Siberian Spruce (Picea obovata Ledeb.) in middle Siberia. Russian Journal of Genetics 44(1): 35-43. DOI: 10.1134/ S1022795408010055.

Kremer A., 1994. Diversité génétique et variabilité des caractères phenitypiques ches les arbres forestiers. Genetics Selection Evolution 26, Suppl.1: 105-123. DOI: 10.1186/1297-9686-26-S1-S105.

Krutovskii K.V., Bergmann F., 1995. Introgressive hybridization and phylogenetic relationship between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity 74(5): 464-480. DOI: 10.1038/hdy.1995.67.

LagercrantzU., Ryman N., 1990. Genetic structure of Norway spruce (Picea abies (L.) Karst.): Concordance of Morphological and Allozymic Variation. Evolution 44(1): 38-53. DOI: 10.2307/2409523.

Langella O., 1999. Population genetic software 1.2.31. free software foundation,Boston. Avaible on http//bioinformatics.org.

Leberg P.L., 2002. Estimating allelic richness: Effects of sample size and bottlenecks. Molecular Ecology 11(11): 2445-2449. DOI: 10.1046/ j.1365-294X.2002.01612.x.

Lewandowski A., Burczyk J., 2002. Allozyme variation of Picea abies in Poland. Scandinavian Journal of ForestResearch 17 (6): 487-494. DOI: 10.1080/02827580260417134.

Lundkvist K., 1979. Allozyme frequency distribution in four Swedish populations of Norway spruce (Picea abies (L.) Karst.). - Hereditas 90(1): 127-143. DOI: 10.1111/j.1601-5223.1979.tb01300.x.

Luo J., Wang Y., Karpelainen H., Li C., 2005. Allozyme variation in natural populations of Picea asperata. Silva Fennica 39(2): 167-176.

Mánek J., 1999. Genetic structure of three natural Norway spruce populations in theSumavaMountainsdetermined by isoenzyme analysis. Silva Gabreta vol.3: 173-182.

Milovanovic J., Sijacić-Nikolic M., 2010. Characterization of serbian spruce variability applying isoenzyme markers. Biotechnology & Biotechnological Equipment 24(1): 1600-1605. DOI: 10.2478/V10133-010-0012-8.

Muller-Starck G., 1995. Genetic variation in high elevated populations of Norway spruce (Picea abies (L.) Karst.) inSwitzerland. Silvae Genetica 44(5-6): 356-362.

Pârnuţă Gh., 2008. Variabilitatea genetică şi ameliorarea arborilor de molid cu coroană îngustă în România [Genetic variability and tree impruvment of Norway spruce narrow tree in Romania]. Editura Silvică, Bucureşti: p. 181.

Peakall R., Smouse P.E., 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1): 288-295. DOI: 10.1111/j.1471-8286.2005 .01155.x.

Sabor J., Kempf M., Masternak K., 2013. Genetic structure of Norway spruce (Picea abies (L.) Karst.) provenances tested in IPTNS-IUFRO 1964/68 experiment in Krynica. Folia Forestalia Polonica, Seria A - Forestry 55 (1): 10–17. DOI: 10.2478/ffp-2013-0002.

Sequeira A.S., Confalonieri V.A., Vilardi J.C., 1997. An adaptive explanation for geographically structured allozyme variation in Dichroplus elongates (Orthoptera: Acrididae). Journal of Genetics 76(1): 33-42. DOI: 10.1007/BF02931767.

Şofletea N., Curtu L., 2007. Dendrologie [Dendrology]. Editura Universităţii TransilvaniaBraşov, 304 p.

Stănescu V., Şofletea N., 1992. Cercetări de genetică ecologică în molidişuri montane (II). [Ecological genetics research in mountains spruce stands]. Revista Pădurilor 1: 2-5.

Sulkowska M.K., 2012. Isoenzyme Analyses Tools Used Long Time inForestScience. In: K. Gowsi (eds.): Chemistry, Analitical Chemistry, Electrophoresis. ISBN 978-953-51-0846-7.http://www.intechopen.com/books/electrophoresis/isoenzyme-analyses-tools-used-long-time-in-forest-science.

Teodosiu M., 2009. Molidul (Picea abies (L.) Karst.). In: G. Mihai (ed.) Surse de seminţe testate pentru principalele specii de arbori forestieri din România (Seed sources tested for the mains species of forest trees in Romania) Editura Silvică, p.184-190.

Teodosiu M., 2011. Cercetari privind variabilitatea genetica in arboretele de molid din Obcinele Bucovinei [Resarch regarding genetic variability in Norway spruce stands from Obcinele Bucovinei]. Ph. D. Thesis, Department of Forest Sciences,Transilvania University of Braşov, 164 p.

ThompsonI., Mackey B., McNulty S., Mosseler A., 2009.Forestresilience, biodiversity, and climate change. A Synthesis of the Biodiversity/Resilience/Stability inForestEcosystems. Secretariat of the Convention on Biological Diversity,Montreal. Technical Deries no. 43, 67 pages.

Vicario F., Vendramin G.G., Rossi P., Liò P., Giannini R., 1995. Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relict population of Abies nebrodensis. Theoretical and Applied Genetics 90(7-8): 1012- 1018. DOI:10.1007/BF00222915.

Yeh F.C., Yang R., 1999. Popgene Version 1.31. Department of Renewable Resources,UniversityofAlberta. http://www.ualberta.ca/~fyeh/popgene.pdf.

Zubizarreta G.A., Peltola H., Pulkkinen P., 2009. Growth and wood property traits in narrow crowned Norway spruce (Picea abies f. pendula) clones grown in southernFinland. Silva Fennica 43 (3): 369-382.


Supplementary Data
| DOWNLOAD 22KB
No metrics available for this article.