Long-term effects of gap creation and liming on understory vegetation with a focus on tree regeneration in a European beech (Fagus sylvatica L.) forest

Authors

  • N. Lin Blisgenweg 1, Department of Silvicuture and Forest Ecology of the Temperate Zones, Georg-August University Gottingen, Germany
  • N. Bartsch Blisgenweg 1, Department of Silvicuture and Forest Ecology of the Temperate Zones, Georg-August University Gottingen, Germany
  • T. Vor Blisgenweg 1, Department of Silvicuture and Forest Ecology of the Temperate Zones, Georg-August University Gottingen, Germany

DOI:

https://doi.org/10.15287/afr.2014.274

Keywords:

natural regeneration, beech seedling, canopy opening, lime application, ground vegetation, competition, plant biomass

Abstract

The long-term effects of gap creation and liming on tree regeneration and understory competition were examined in a mature European beech (Fagus sylvatica) stand on a nutrient-poor site. In 1989, trees were felled to create four 30 m wide circular gaps, and 3 t ha-1 fine dolomite was applied to two of these gaps and the surrounding area, whereas the remaining two gaps and most parts of the stand remained untreated. In 2010, the stand density was 153 trees x ha-1 and the basal area was 29.51 m2 x ha-1. Testing a factorial combination of two levels of canopy cover (gap and stand) and two levels of lime application (limed and unlimed), the results of the case study partly support our initial hypothesis that the combined or single effects of liming and canopy removal on understory plant communities last for more than 20 years. Some effects disappeared slowly over time, while others did not. Understory vegetation of the unlimed gaps and thelimed and unlimed stands was rapidly dominated by beech regeneration, whereas limed gaps were dominated by fireweed (Epilobium angustifolium), bramble (Rubus fruticosus agg.) and raspberry (Rubus ideaus) for around 14 years. There, the density of the beech regeneration was reduced by competitive ground vegetation species. Plant species richness (n/100 m²) was still significantly different after 23 years, with an average 10 species per 100 m² in the limed stand area, 5 species in the unlimed stand area, 25 species in the limed gaps, and only 5 species in the unlimed gaps. Only the combination of liming and canopy removal enhanced the species richness in the long run. On our study site, this combination of liming and canopy opening had a long lasting influence on the ground vegetation in terms of retarding the beech regeneration and enhancing species’ richness.

References

Abrams M.D., DownsJ.A., 1990. Sucessional replacement of old-growth white oak by mixed mesophytic hardwoods in southwestern Pennsylvania. Can J For Res 20: 1964-1870. DOI: 10.1139/x90-250 AndersonW.B., Eickmeier W.G., 2000. Nutrient resorption in Claytonia virginiaca L.: implications for deciduous forest nutrient cycling. Can J Bot 78: 832-839. DOI: 10.1139/b00-056 Akça A., Athari S., 1992. Biomasse Entwicklung in einem Buchenwaldökosystem in der Phase des Stickstoffvorratsabbaus. In Berichte des Forschungszentrums Waldökosysteme, Universität Göttingen, Reihe B, Bd. 31, 386–389. Ares A., Neill A.R., Puettmann K.J., 2010. Understory abundance, species diversity and functional attribute response to thinning in coniferous stands. For Ecol Manag. 260: 1104-1113.Bartsch N (2000) Element release in beech (Fagus sylvatica L.) forest gaps. Water Air Soil Poll 122: 3-16. DOI: 10.1023/A: 1005265505479 Bartsch N., Röhrig E., 2009. Management options for European beech forests in relation to changes in C- and N-Status as described by the three study sites. In: Brumme R,Khanna PK(ed) Functioning and management of European beech ecosystems. Ecological Studies, 208: 425-456. Berlin: Springer-Verlag. Bartsch N., Bauhus J., Vor T., 2002. Effects of group selection and liming on nutrient cycling in a European beech forest on acidic soil. In: Dohrenbusch A., and Bartsch N. (Ed),Forestdevelopment-succession, environmental stress and forest management.Springer-Verlag,Berlin, pp. 109–144. Bauhus J., 1994. Stoffumsätze in Lochhieben. Dissertation, Georg-August-Universität Göttingen. Bauhus J., Bartsch N., 1996. Fine root growth in beech (Fagus sylvatica L.) forest gaps. Can J For Res 26: 2153-2160. DOI: 10.1139/ x26-244 Bauhus J., Vor T., Bartsch N., Cowling A., 2004. The effects of gaps and liming on forest floor decomposition and soil C and N dynamics in a Fagus sylvatica forest. Can J For Res 34: 509-518. DOI: 10.1139/ x03-218 Bauhus J., Bartsch N., 1995. Mechanisms for carbon and nutrient release and retention in beech forest gaps. I. Microclimate, water balance and seepage water chemistry. Plant Soil 168-169, 579-584. DOI: 10.1007/BF00029371 Beatty S.W., 2003. Habitat heterogeneity and maintenance of species in understory communities. In: Gilliam FS, Robets MR (ed) The Herbaceous Layer in Forests of Eastern North America, pp 177-197. New York: Oxford University Press. Beckage B., Clark J.S., ClintonB.D., Haines B.L., 2000. Along-term study of tree seedling recruitment in southern Appalachian forests: the effects of canopy gaps and shrub understories. Can J For Res 30: 1617–1631. DOI: 10.1139/x00-075 Bengtsson J., Nilsson S.G., Franc A., Menozzi P., 2000. Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manag 132: 39-50. Bolte A., Czajkowski T., Bielefeldt J., Wolff B., Heinrichs S., 2009. Schätzung der oberirdischen Biomassevorräte des Baum- und Strauchunterwuchses in Wäldern auf der Basis von Vegetationsaufnahmen. Forstarchiv 80: 222-228. Bratton S.P., 1976. Resource division in and understory herb community: Responses to temporal and microtopographpic gradients. Am Nat 110: 679-693. DOI: 10.1086/283097 Braun-Blanquet J., 1964. Pflanzensoziologie, 3. Aufl.,Springer-Verlag, Wien. DOI: 10.1007/978-3-7091-8110-2 Chapin F.S., 1983. Nitrogen and phosphorus nutrition and nutrient cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forest. Can J For Res 13: 773-781. DOI: 10.1139/x83-107 Chastain R.A., Currie W.S., Townsend P.A., 2006. Carbon sequestration and nutrient cycling implications of the evergreen understory layer in Appalachian forests. For Ecol Manag 231: 63-77. D'Amato A.W., Orwig D.A., Foster D.R., 2009. Understory vegetation in old-growth and second-growth Tsuga canadensis forests in western Massachusetts. For Ecol Manag 257: 1043-1052. Davis M.A., Wrage K.J., Reich P.B., Tjoelker M.G., Schaeffer T., Muermann C., 1999. Survival, growth, and photosynthesis of tree seedlings competing with herbaceous vegetation along a water-light-nitrogen gradient. Plant Ecol 145: 341-350. DOI: 10.1023/ A:1009802211896 Ewald J., 2003. The calcareous riddle: why are there so many calciphilous species in the central European flora? Folia Geobot 38: 357-366. DOI: 10.1007/ BF02803244 Garcia-Gonzalo J., Peltola H., Brice-nõ-Elizondo E., Kellomäãki S., 2007. Effects of climate change and management on timber yield in boreal forests, with economic implications: A case study. Ecol Model 209: 220–234. DOI: 10.1016/ j.ecolmodel.2007.06.021 Gasser D., Messier C., Beaudet M., Lechowicz M.J., 2010. Sugar maple and yellow birch regeneration in response to canopy opening, liming and vegetation control in a temperate deciduousforestofQuebec. . For Ecol Manag 259, 2006-2014. Geßler A., Keitel C., Kreuzwieser J., Matyssek R., Seiler W., Rennenberg H., 2007. Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21: 1-11. DOI: 10.1007/s00468-006-0107-x Gilliam F.S., Roberts M.R., 2003. The dynamic nature of the herbaceous layer: synthesis and future directions for research. In: Gilliam F.S., Roberts M.R. (eds) The herbaceous layer in forests ofEastern North America, pp 323-337.New York: Oxford University Press. Gilliam F.S., 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57: 845-858. DOI: 10.1641/B571007 Gordon D.R., Welker J.M., Menke J.W., Rice K.J., 1989. Competition for soil water between annual plants and blue oak (Quercus douglasii) seedlings. Oecologia 79: 533–541. DOI: 10.1007/BF00378672 Gray A.N., Spies T.A., 1997. Microsite controls on tree seedling establishment in conifer forest canopy gaps. Ecology 78: 2458-2473. DOI: 10.1890/0012-9658(1997)078[2458:MCOTSE]2.0.CO;2 Guckland A., Jacob M., Flessa H., Thomas F.M., Leuschner Ch., 2009. Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.). J Plant Nutri Soil Sci 172: 500-511. DOI: 10.1002/jpln.200800072 Heinrichs S., Bernhardt-Römermann M., Schmidt W., 2010. The estimation of aboveground biomass and nutrient pools of understorey plants in closed Norway spruce forests and on clearcuts. Eur J For Res 129 (4): 613-624. DOI: 10.1007/ s10342-010-0362-7 Jonard M., André F., Giot P., Weissen F., Van der Perre R., Ponette Q., 2010. Thirteen-year monitoring of liming and PK fertilization effects on tree vitality in Norway spruce and European beech stands. Eur J For Res 6: 1203-1211. DOI: 10.1007/s10342-010-0410-3 Kelemen K., Mihók B., Gálhidy L., 2012. Dynamic response of herbaceous vegetation to gap opening in a central European beech stand. Silva Fenn 46: 53-66. DOI: 10.14214/sf.65 Knoop T., WalkerB.H., 1985. Interactions of woody and herbaceous vegetation in a southern African Savanna. J. Ecol 73 (1): 235-253. DOI: 10.2307/2259780 Leuschner C., Hertel D., Schmid I., Koch O., Muhs A., Hölscher D., 2004. Stand fine root biomass and fine root morphology in old-growth beech forests as a function of precipitation and soil fertility. Plant Soil 258: 43-56. DOI: 10.1023/ B:PLSO.0000016508.20173.80 Lindner M., Maroschek M., Netherer S., Kremer A., et al.. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259: 698-709. Meiwes K.J., Khanna P.K., Ulrich B., 1986. Parameters for describing soil acidification and their relevance to stability of forest ecosystems. For. Ecol. Manage. 15:161-179. DOI: 10.1016/0378-1127(86)90064-2 MooreJ.D., Duchesne L., Ouimet R., 2008. Soil properties and maple-beech regeneration a decade after liming in a northern hardwood stand. For Ecol Manag 255: 3460-3468. MooreJ.D., Ouimet R., Duchesne L., 2012. Soil and sugar maple response 15 years after dolomitic lime application. For Ecol Manag 281: 130-139. Mountford E.P., Savill P.S., Bebber D.P., 2006. Patterns of regeneration and ground vegetation associated with canopy gaps in a managed beechwood in southern England. Forestry 79: 389–408. DOI: 10.1093/forestry/cpl024 Mölder A., Bernhardt-Römermann M., Schmidt W., 2008. Herb-layer diversity in deciduous forest: Raised by tree richness or beaten by beech? For Ecol Manag 256: 272-281. Müller-Using S., Bartsch N., 2009. Decay dynamic of coarse and fine woody debris of a beech (Fagus sylvatica L.) forest in Central Germany. Eur J For Res 128: 287-296. DOI: 10.1007/s10342-009-0264-8 Nyland R.D., Bashant A.L., Bohn K.K., Verostek J.M., 2006. Interference to hardwood regeneration in northeasternNorth America: Ecological characteristics of American Beech, Striped Maple, and Hubble bush. Northern J Appl Forestry 23: 53-61. Phillips D.L., Murdy W.H., 1985. Notes: effects of Rhododendron (Rhododendron maximum L.) on regeneration of Southern Appalachian hardwoods. Forest Sci 31: 226-233. Röhrig E., 1991. Vegetation structure and forest succession. In: Röhrig E, Ulrich B (ed)TemperateDeciduousForests. Elsevier,Amsterdam, pp 35-49. Royo A.A., Carson W.P., 2006. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession. Can J For Res 36: 1345-1362. DOI: 10.1139/x06-025 Sabo K.E., Sieg C.H., Hart S.C., Bailey J.D., 2009. The role of disturbance severity and canopy closure on standing crop of understory plant species in ponderosa pine stands in northernArizona, USA. For Ecol Manag 257:1656-1662. Schmidt W., 2009. Vegetation. In: Brumme R,Khanna PK(ed) Functioning and management of European beech ecosystems. Ecological Studies 208: 65–86. Heidelberg: Springer-Verlag. Schulze E.D., Luyssaert S., Ciais P., Ciais A., Freibauer I.A., Janssens I.A., et al., 2009. Importance of methane and nitrous oxide emissions for Europe's terrestrial greenhouse gas balance. Nat Geosci 2: 842–850. DOI: 10.1038/ngeo686 Ulrich B., 1994. Nutrient and acid-base budgets of central European forest ecosystems. In: Godbold DL, Hüttermann A (ed) Effects of acid rain on forest processes. Wiley,New York, pp 231-264. Vor T., Brumme R., 2002. N2O losses result in underestimation of in situ determinations of net N mineralization. Soil Biol Biochem 34: 541-544. DOI: 10.1016/S0038-0717(01)00190-0 Whigham D.F., 2004. Ecology of woodland herbs in temperate deciduous forests. Annu Rev Ecol Evol Sys. 35: 583-621. DOI: 10.1146/annurev.ecolsys. 35.021103.105708 Yang G., Chen H., Cheng S., et al., 2012. Interactive effects of canopy gap, liming and understory control on aboveground growth of yellow birch and sugar maple seedlings. Ekoloji 21: 1-8. DOI: 10.5053/ ekoloji.2012.841 Zak D.R., Grigal D.F., Gleeson S., Tilman D., 1990. Carbon and nitrogen cycling during old-field succession: Constraints on plants and microbial biomass. Biogeochemistry 11: 111-12. DOI: 10.1007/ BF00002062

Downloads

Published

2014-11-27

Issue

Section

Research article