Diversity in needle morphology and genetic markers in a marginal Abies cephalonica (Pinaceae) population

Authors

  • Aristotelis C. Papageorgiou Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Pantazidou 193, GR-68200 Orestiada, Greece
  • Chrysoula Kostoudi Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Pantazidou 193, GR-68200 Orestiada, Greece
  • Ioannis Sorotos Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Pantazidou 193, GR-68200 Orestiada, Greece
  • Georgios Varsamis Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Pantazidou 193, GR-68200 Orestiada, Greece
  • Georgios Korakis Department of Forestry, Environmental Management and Natural Resources, Democritus University of Thrace, Pantazidou 193, GR-68200 Orestiada, Greece
  • Andreas D. Drouzas Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-54124, Greece

DOI:

https://doi.org/10.15287/afr.2015.410

Keywords:

Abies cephalonica, conifer, needle morphology, genetic diversity, adaptation

Abstract

Differences in needle traits of coniferous tree species are considered as the combined result of direct environmental pressure and specific genetic adaptations. In this study, diversity and differentiation within and among four Abies cephalonica subpopulations of a marginal population on Mt. Parnitha - Greece, were estimated using needle morphological traits and gene markers. We tested the connection of morphological variability patterns of light and shade needles with possible adaptation strategies and genetic diversity. Six morphological characteristics were used for the description of both light and shade needles at 100 trees, describing needle size and shape, stomatal density and needle position on the twigs. Additionally, six RAPD and three ISSR markers were applied on DNA from the same trees. Light needles were significantly different than shade needles, in all traits measured, apparently following a different light harvesting strategy. All four subpopulations exhibited high genetic diversity and the differentiation among them was relatively low. Differences among populations in light needles seemed to depend on light exposure and aspect. In shade needles, the four subpopulations seemed to deviate stronger from each other and express a rather geographic pattern, similarly to the genetic markers. Two of the subpopulations studied were lost during a wildfire, two years after sampling. Although the subpopulations burnt were most diverse and most differentiated, we expect a large part of the total genetic diversity of the burnt trees to still exist in the surviving subpopulations, since gene flow must have been effective in keeping all subpopulations connected.

References

Abrams M.D.,KubiskeM.E., 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in centralWisconsin: influence of light regime and shade tolerance rank.ForestEcology and Management 31(4):245-254. Ai B., Kang M., Huang H., 2014. Assessment of Genetic Diversity in Seed Plants Based on a Uniform π Criterion. Molecules 19(12): 20113-20127. Aleksic J.M., Geburek T., 2014. Quaternary population dynamics of an endemic conifer, Picea omorika, and their conservation implications. Conservation Genetics 15(1):87-107. AltonP.B., North P.R., Los S.O., 2007. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Global Change Biology 13(4):776-787. Aplada E., Georgiadis T., Tiniakou A., Theocharopoulos M., 2007. Phytogeography and ecological evaluation of the flora and vegetation ofMt.Parnitha(Attica,Greece).EdinburghJournal of Botany 64(2):185-207. Apatsidis L.D., Tsopelas P., Aggelopoulos E., 2005. Silvicultural problems in the fir forest ofMountParnis[in Greek]. Geotechnika Epistimonika Themata 16:4-17. Athanassaki S., 1999. Relationships between the change in bioclimatic type and the phenomenon of intensive dying of fir [in Greek]. Dasiki Erevna 12:3-8. Aussenac G., 2002. Ecology and ecophysiology of circum-Mediterranean firs in the context of climate change. Annals ofForestScience 59(8):823-832. Awad L., Fady B., Khater C., Roig A., Cheddadi R., 2014. Genetic structure and diversity of the endangered fir tree ofLebanon(Abies cilicica Carr.): Implications for Conservation. PLoS ONE 9(2), e90086. Barbéro Μ., Quézel P., 1976. Les groupements forestiers de Gréce Centro-Méridionale. Ecologia Mediterranea 2:3-86 Bella Ε., Liepelt S., Parducci L., Drouzas A., 2015. Genetic insights into the hybrid origin of Abies xborisii-regis Mattf. Plant Systematics and Evolution 301(2):749-759. Bergmeier E., 2002. Plant communities and habitat differentiation in the Mediterranean coniferous woodlands ofMt.Parnon(Greece). Folia Geobotanica 37(3):309-331. Bonnet E., Van de Peer Y., 2002. zt: a software tool for simple and partial Mantel tests. Journal of Statistical Software 7(10):1-10. Canham C.D., 1988. Growth and canopy architecture of shade-tolerant trees: response to canopy gaps. Ecology 69(3):786-795. Carter G.A., Smith W.K., 1985. Influence of shoot structure on light interception and photosynthesis in conifers. Plant Physiology 79(4):1038-1043. Chen H.Y.H., Klinka K., Kayahara G.J., 1996. Effects of light on growth, crown architecture and specific leaf area for naturally established Pinus contorta var. latifolia and Pseudotsuga menziesii var. glauca saplings. Canadian Journal ofForestResearch 26(7):1149-1157. Christensen K.I., 1997. Abies Miller. In: Strid A, Tan K (eds) Flora Hellenica, vol 1. Koeltz Scientific Books, Königstein, pp 1-3. Claveau Y., Messier C., Comeau P.G., Coates K.D., 2002. Growth and crown morphological responses of boreal conifer seedlings and saplings with contrasting shade tolerance to a gradient of light and height. Canadian Journal ofForestResearch 32(3):458-468. Cregg B.M., Teskey R.O., Dougherty P.M., 1993. Effect of shade stress on growth, morphology and carbon dynamics of loblolly pine branches. Trees 7(4):208-213. Drouzas A.D., 2000. Determination and analysis of variation of Greek fir species (Abies sp.), by using biochemical and molecular markers [in Greek]. Dissertation, Department of Forestry and Natural Environment,AristotleUniversityofThessaloniki, 198 p. Duchesneau R.,LesageI., Messier C., Morin H., 2001. Effects of light and intraspecific competition on growth and crown morphology of two size classes of understory balsam fir saplings.ForestEcology and Management 140(2):215-225. Eliades N.G.H., Gailing O., Leinemann L., Fady B., Finkeldey R., 2011. High genetic diversity and significant population structure in Cedrus brevifolia Henry, a narrow endemic Mediterranean tree fromCyprus. Plant Systematics and Evolution 294(3-4):185-198. Fady B., Arbez M, Ferrandes P (1991) Variability of juvenile Greek firs and stability of characteristics with age. Silvae Genetica 40:91-100 Fady B., Arbez M., Marpeau A., 1992. Geographic variability of terpene composition in Abies cephalonica Loudon and Abies species around theAegean: hypotheses for their possible phylogeny from the Miocene. Trees 6(3):162-171. Fady B., Conkle M.T., 1993. Allozyme variation and possible phylogenetic implications in Abies cephalonica Loudon and some relatedEastern Mediterraneanfirs. Silvae Genetica 42:351-359. Farjon A.,2010. Ahandbook of the world's conifers. Vol. 1. Koninklijke Brill NV,Leiden, TheNetherlands, 1111p. Fox J., 2005. The R Commander: A Basic Statistics Graphical User Interface to R. Journal of Statistical Software 14(9):1-42 Ganatsas P., Daskalakou E., Paitaridou D., 2012. First results on early post-fire succession in an Abies cephalonica forest,Parnitha National Park,Greece. iForest-Biogeosciences and Forestry 5(1):6-12. Gebauer R., Volařík D., Urban J., Børja I., Nagy N.E., Eldhuset T.D., Krokene P., 2011. Effect of thinning on the anatomical adaptation of Norway spruce needles. Tree Physiology 31(10):1103-1113. Givnish T.J., 1988. Adaptation to sun and shade: a whole-plant perspective. Functional Plant Biology 15(2):63-92. Gouvas M., Sakellariou N., 2011. Climate and forest vegetation ofGreece[in Greek]. National Observatory ofAthens, Technical Library, Vol.1/2011,Athens,Greece. Grassi G., Giannini R., 2005. Influence of light and competition on crown and shoot morphological parameters of Norway spruce and silver fir saplings. Annals ofForestScience 62(3):269-274. Guillot G.,SantosF., 2010. Using AFLP markers and the Geneland program for the inference of population genetic structure. Molecular Ecology Resources 10(6):1082-1084. Guillot G., Renaud S., Ledevin R., Michaux J., Claude J.,2012. Aunifying model for the analysis of phenotypic, genetic, and geographic data. Systematic biology 61(6):897-911. Heliotis F.D., Karandinos M.G., Whiton J.C., 1988. Air pollution and the decline of the fir forest inParnisNational Park, nearAthens,Greece. Environmental Pollution 54(1):29-40. Huff D.R., Peakall R., Smouse P.E., 1993. RAPD variation within and among natural populations of outcrossing buffalograss [Buchloe dactyloides, Nutt. Engelm.]. Theoretical and Applied Genetics 86(8):927-934. Ishii H., Hamada Y., Utsugi H., 2012. Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light. Tree Physiology 32(10):1227-1236. Jombart T., 2008. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403-1405. Jombart T., Devillard S., Balloux F., 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC genetics 11(1):94. Josse J., Husson F., 2012. Selecting the number of components in PCA using cross-validation approximations. Computational Statistics and Data Analysis 56(6):1869-1879. Kormutak A., Szmidt A.,E., Wang X.R., 1993. Restriction fragment length polymorphism of chloroplast DNAs in some species of fir, Abies sp. Biologia Plantarum 35(1):113-119. Krajmerová D., Paule L., Zhelev P., Voleková M., Evtimov I., Gagov V., Gömöry D., 2015. Natural hybridization in eastern-Mediterranean firs: The case of Abies borisii-regis. Plant Biosystems (ahead-of-print):1-11. Lê S., Josse J., Husson F., 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25(1):1-18. Leverenz J.W., HinckleyT.M., 1990. Shoot structure, leaf area index and productivity of evergreen conifer stands. Tree Physiology 6(2):135-149. DOI: 10.1093/treephys/6.2.135 Lewis J.D., Olszyk D., Tingey D.T., 1999. Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiology 19(4-5):243-252. DOI: 10.1093/treephys/19.4-5.243 LinaresJ.C., 2011. Biogeography and evolution of Abies, Pinaceae in the Mediterranean basin: the roles of long-term climatic change and glacial refugia. Journal of Biogeography 38(4):619-630. DOI: 10.1111/j.1365-2699.2010.02458.x Mantel N., 1967. The detection of disease clustering and a generalized regression approach. Cancer research 27(2):209-220. Mattfeld J., 1927. Aus Wald und Macchie in Griechenland. Mitteilungen der Deutschen Dendrologischen Gesellschaft 38:106-151. Mattfeld J., 1930. Über hybridogene Sippen der Tannen., nachgewiesen an den Formen der Balkan Halbinsel. Bibliotheca Botanica 100: 1-84. Mayr S., Schwienbacher F., Bauer H., 2003. Winter at the alpine timberline: why does embolism occur in Norway spruce but not in stone pine? Plant Physiology 131(2):1-13. DOI: 10.1104/pp.011452 Metslaid M., Jõgiste K., Nikinmaa E., Moser K.W., Porcar-Castell A., 2007. Tree variables related to growth response and acclimation of advance regeneration of Norway spruce and other coniferous species after release. ForestEcology and Management 250(1):56-63. DOI: 10.1016/j.foreco.2007.03.009 Millar C.S., 1974. Chapter 4: Decomposition of coniferous leaf litter. In Dickinson C.H., Pugh G.J.F., eds. Biology of plant litter decomposition, volume 1. Academic Press, San Diego, pp. 105-128. DOI: 10.1016/B978-0-12-215001-2.50010-6 Mitchell A.K., 1998. Acclimation of Pacific yew, Taxus brevifolia foliage to sun and shade. Tree Physiology 18(11):749-757. DOI: 10.1093/treephys/18.11.749 Mitsopoulos D.J., Panetsos C.P., 1987. Origin of variation in fir forests ofGreece. Silvae Genetica 36:1-15. Mori A., Takeda H., 2004. Functional relationships between crown morphology and within-crown characteristics of understory saplings of three codominant conifers in a subalpine forest in central Japan. Tree Physiology 24(6):661-670. DOI: 10.1093/treephys/24.6.661 Morgan M.G., MacLean D.A., Piene H., 1983. Variation in balsam fir needle length due to crown position, foliage age, and inter-tree differences.ForestScience 29(2):412-422. Nei M., 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences., USA70(12):3321-3323. DOI: 10.1073/pnas.70.12.3321 Nei M., 1987. Molecular Evolutionary Genetics.ColumbiaUniversityPress,New York, 512 p. Niinemets Ü., Kull O., 1995. Effects of light availability and tree size on the architecture of assimilative surface in the canopy of Picea abies: variation in needle morphology. Tree Physiology 15(5):307-315. DOI: 10.1093/treephys/15.5.307 Niinemets Ü., 1997. Acclimation to low irradiance in Picea abies: influence of past and present light climate on foliage structure and function. Tree Physiology 17(11):723-732. DOI: 10.1093/treephys/17.11.723 Niinemets Ü., Ellsworth D.S., Lukjanova A., Tobias M., 2001. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light. Tree Physiology 21(17): 1231-1244. DOI: 10.1093/treephys/21.17.1231 Niinemets Ü., Cescatti A., Lukjanova A., Tobias M., Truus L., 2002. Modification of light-acclimation of Pinus sylvestris shoot architecture by site fertility. Agricultural and ForestMeteorology 111(2): 121-140. DOI: 10.1016/S0168-1923(02)00011-4 Niinemets Ü., Lukjanova A., 2003. Needle longevity., shoot growth and branching frequency in relation to site fertility and within-canopy light conditions in Pinus sylvestris. Annals of ForestScience 60(3): 195-208. DOI: 10.1051/forest:2003012 Niinemets Ü., Tobias M., Cescatti A., Sparrrow A.D., 2006. Size-dependent variation in shoot light-harvesting efficiency in shade-intolerant conifers. International Journal of Plant Sciences 167(1): 19-32. DOI: 10.1086/497845 Niinemets Ü., Lukjanova A., Turnbull M.H., Sparrow A.D., 2007. Plasticity in mesophyll volume fraction modulates light-acclimation in needle photosynthesis in two pines. Tree Physiology 27(8):1137-1151. DOI: 10.1093/treephys/27.8.1137 Niinemets Ü., 2010. Areview of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research 25(4):693-714. DOI: 10.1007/s11284-010-0712-4 Nybom H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13(5):1143-1155. DOI: 10.1111/j.1365-294X.2004.02141.x Oker-Blom P., Lappi J., Smolander H., 1991. Radiation regime and photosynthesis of coniferous stands. In Myneni R.B., Ross J., (eds), Photon-Vegetation Interactions: Applications in Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin, pp. 469-499. DOI: 10.1007/978-3-642-75389-3_15 Page R.D.M., 1996. TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12(4):357-358. Palmroth S., Stenberg P., Smolander S., Voipio P., Smolander H., 2002. Fertilization has little effect on light-interception efficiency of Picea abies shoots. Tree Physiology 22(15-16):1185-1192. DOI: 10.1093/treephys/22.15-16.1185 Panetsos CP., 1975. Monograph of Abies cephalonica Loudon. Annales Forestales., Anali za Sumarstvo.,Zagreb7:1–22. Papageorgiou A.C., Hattemer H.H., Panetsos K.P., 1994. Genetic differentiation of natural Mediterranean cypress (Cupressus sempervirens L.) populations inGreece.ForestGenetics 1(1):1-12. Parducci L., Szmidt A.E., Ribeiro M.M., Drouzas A.D., 2001. Taxonomic position and origin of the endemic Sicilian fir Abies nebrodensis., Lojac. Mattei based on allozyme analysis.ForestGenetics 8(2):119-128. Parker W.C., Mohammed G.H., 2000. Photosynthetic acclimation of shade-grown red pine (Pinus resinosa Ait.) seedlings to a high light environment. New Forests 19(1):1-11. DOI: 10.1023/A:1006668928091 Peakall R., Smouse P.E., Huff DR., 1995. Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides. Molecular Ecology 4(2):135-147. DOI: 10.1111/j.1365-294X.1995.tb00203.x Peakall R., Smouse P.E., 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6(1):288-295. DOI: 10.1111/ j.1471-8286.2005.01155.x Peakall R., Smouse P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19):2537-2539. DOI: 10. 1093/bioinformatics/bts460 Raftoyannis Y., SpanosI., Radoglou K., 2008. The decline of Greek fir, Abies cephalonica Loudon: relationships with root condition. Plant Biosystems 142(2):386-390. DOI: 10. 1080/11263500802151017 RichardsonA.D., Ashton P.M.S., Berlyn G.P., McGroddyM.E., Cameron I.R., 2001. Within-crown foliar plasticity of western hemlock, Tsuga heterophylla, in relation to stand age. Annals of Botany 88(6):1007-1015. DOI: 10.1006/anbo.2001.1538 Sancho-Knapik D., Peguero-Pina J.J., Flexas J., Herbette S., Cochard H., Niinemets Ü., Gil-Pelegrín E., 2014. Coping with low light under high atmospheric dryness: shade acclimation in a Mediterranean conifer (Abies pinsapo Boiss). Tree Physiology 34(12): 1321-33. DOI: 10.1093/treephys/tpu095 Scaltsoyiannes A., Panetsos K.P., Zaragotas D., 1991. Genetic variation of Greek fir, as determined by isozyme analysis, and its relation to other Mediterranean firs. In: Proceedings of the third E.E.C. meeting: Adaptation, breeding and silviculture of Mediterranean firs. Publ. E.E.C., pp. 99-117. Scaltsoyiannes A., Tsaktsira M., Drouzas A.D., 1999. Allozyme differentiation in the mediterranean firs, Abies, Pinaceae. A first comparative study with phylogenetic implications. Plant Systematics and Evolution 216(3-4):289-307. DOI: 10.1007/BF01084404 Schulze E.D., Beck E., Müller-Hohenstein K., 2002. Pflanzenökologie. Springer,Heidelberg, 702 p. Schütt P., 1994. Tannenarten Europas und Kleinasiens. Ecomed Verlagsgesellschaft, Landsberg amLech, 132 p. Sellin A., 2001. Morphological and stomatal responses of Norway spruce foliage to irradiance within a canopy depending on shoot age. Environmental and Experimental Botany 45(2): 115-131. DOI: 10.1016/S0098-8472(00)00086-1 Smolander S., Stenberg P., 2003. Amethod to account for shoot scale clumping in coniferous canopy reflectance models. Remote Sensing of Environment 88(4):363-373. DOI: 10. 1016/j.rse.2003.06.003 Sprugel D.G., Brooks J.R., HinckleyT.M., 1996. Effects of light on shoot geometry and needle morphology in Abies amabilis. Tree Physiology 16(1-2):91-98. DOI: 10.1093/treephys/16.1-2.91 Stenberg P., 1996. Simulations of the effects of shoot structure and orientation on vertical gradients in intercepted light by conifers canopies. Tree Physiology 16(1-2):99-108. DOI: 10.1093/treephys/16.1-2.99 Stenberg P., Kangas T., Smolander H., Linder S., 1999. Shoot structure, canopy openness, and light interception in Norway spruce. Plant, Cell & Environment 22(9):1133-1142. DOI: 10.1046/j.1365-3040.1999.00484.x Terrab A., Talavera S., Arista M., Paun O., Stuessy T.F., Tremetsberger K., 2007. Genetic diversity at chloroplast microsatellites (cpSSRs) and geographic structure in endangeredWest Mediterraneanfirs, Abies spp, Pinaceae. Taxon 56(2):409-416. Tsopelas P., Angelopoulos A., Economou A., Voulala M., Xanthopoulou E., 2001. Monitoring crown defoliation and tree mortality in the fir forest ofMount Parnis,Greece. In: Proceedings of the International Conference onForestResearch, A Challenge for an Integrated European Approach. NAGREF / Forest Research InstituteThessaloniki,Greece, pp. 253-258. Tsopelas P., Angelopoulos A., Economou A., Soulioti N., 2004. Mistletoe (Viscum album) in the fir forest of Mount Parnis, Greece. ForestEcology and Management 202(1):59-65. DOI: 10.1016/j.foreco.2004.06.032 Tsumura Y., Uchiyama K., Moriguchi Y., Kimura M.K., Ueno S., Ujino-Ihara T., 2014. Genetic Differentiation and Evolutionary Adaptation in Cryptomeria japonica. G3 Genes Genomes Genetics 4(12):2389-2402. Turrill W.B.,1937. Acontribution to the botany ofAthosPeninsula. Bulletin of Miscellaneous Information / Royal Botanic Gardens.,Kew4:197-273. Vicario F., Vendramin G.G., Rossi P., Lio P., Giannini R., 1995. Allozyme, chloroplast DNA and RAPD markers for determining genetic relationships between Abies alba and the relic population of Abies nebrodensis. Theoretical and Applied Genetics 90(7-8):1012-1018. DOI: 10.1007/BF00222915 Wainhouse D., Ashburner R., Ward E., Rose J., 1998. The effect of variation in light and nitrogen on growth and defence in young Sitkaspruce. Functional Ecology 12(4): 561-572. DOI: 10.1046/j.1365-2435.1998.00232.x Werner C., Ryel R.J., Correia O., Beyschlag W., 2001. Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant, Cell & Environment 24(1): 27-40. DOI: 10.1046/j.1365-3040.2001.00651.x Wickham H., 2009. ggplot2: elegant graphics for data analysis. Springer Science & BusinessMedia,New York, 182 p. Williams H., Messier C., Kneeshaw D.D., 1999. Effects of light availability and sapling size on the growth and crown morphology of understory Douglas-fir and lodgepole pine. Canadian Journal of ForestResearch 29(2):222-231. DOI: 10.1139/x98-189 Wright E.F., Coates K.D., Canham C.D., Bartemucci P., 1998. Species variability in growth response to light across climatic region in northwestern British Columbia. Canadian Journal of ForestResearch 28(6):871-886. DOI: 10.1139/x98-055 Xing F., Mao J.F., Meng J., Dai J., Zhao W., Liu H., Xing Z., Zhang H., Wang X.R., Li Y., 2014. Needle morphological evidence of the homoploid hybrid origin of Pinus densata based on analysis of artificial hybrids and the putative parents., Pinus tabuliformis and Pinus yunnanensis. Ecology and Evolution 4(10):1890-1902. DOI: 10.1002/ece3.1062 Youngblood A., FergusonD.E., 2003. Changes in needle morphology of shade-tolerant seedlings after partial overstory canopy removal. Canadian Journal of ForestResearch 33(7):1315-1322. DOI: 10.1139/x03-060 Zobel DB., 1973. Local variation in intergrading Abies grandis - Abies concolor populations in the central Oregon Cascades. Needle morphology and periderm color. Botanical Gazette 134:209-220. DOI: 10.1086/336706

Downloads

Published

2015-06-29

Issue

Section

Research article