Research article

An integrated airborne laser scanning approach to forest management and cultural heritage issues: a case study at Porolissum, Romania

Anamaria Roman, Tudor-Mihai Ursu , Sorina Fărcaş, Vlad-Andrei Lăzărescu, Coriolan Horaţiu Opreanu

Anamaria Roman
Institute of Biological Research Cluj-Napoca, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania
Tudor-Mihai Ursu
Institute of Biological Research Cluj-Napoca, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania. Email: tudor.ursu@icbcluj.ro
Sorina Fărcaş
Institute of Biological Research Cluj-Napoca, National Institute of Research and Development for Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania
Vlad-Andrei Lăzărescu
Institute of Archaeology and History of Art Cluj-Napoca, Romanian Academy, 12-14 Kogălniceanu Street, 400084 Cluj-Napoca, Romania
Coriolan Horaţiu Opreanu
Institute of Archaeology and History of Art Cluj-Napoca, Romanian Academy, 12-14 Kogălniceanu Street, 400084 Cluj-Napoca, Romania

Online First: March 10, 2017
Roman, A., Ursu, T., Fărcaş, S., Lăzărescu, V., Opreanu, C. 2017. An integrated airborne laser scanning approach to forest management and cultural heritage issues: a case study at Porolissum, Romania. Annals of Forest Research DOI:10.15287/afr.2016.755


This paper explores the opportunities that arise where forest ecosystem management and cultural heritage monuments protection converge. The case study area for our analysis was the landscape surrounding the Moigrad-Porolissum Archaeological site. We emphasize that an Airborne Laser Scanning (ALS or LiDAR-Light Detection and Ranging) approach to both forest management and cultural heritage conservation is an outstanding tool, assisting policy-makers and conservationists in decision making for integrated planning and management of the environment. LiDAR-derived surface models enabled a synoptic, never-seen-before view of the ancient Roman frontiers defensive systems while also revealing the present forest road network. The thorough and accurate road inventory data are very useful for updating and modifying forest base maps and registries and also for identifying the priority sectors for archaeological discharge. The ability to identify and determine optimal routes for forest management and to locate previously unmapped ancient archaeological remains aids in reducing costs and creating operational efficiencies as well as in complying with the legislation and avoiding infringements. The potential of LiDAR to demonstrate the long-term and comprehensive human impact on wooded areas is discussed. We identified a significant historical landscape change, consisting of a deforestation period, spanning over more than 160 years, during the Roman Period in Dacia (106-271 AD). The transdisciplinary analysis of the LiDAR data provides the base for combining knowledge from archaeology, forestry and environmental history in order to achieve a thorough analysis of the landscape changes and history. In the “nature versus culture” dichotomy, the landscape, outfield areas and forests are primarily perceived as nature, while in reality they are often heavily marked by human impact. LiDAR offers an efficient method for broadening our knowledge regarding the character and extent of human interaction with landscapes – forested or otherwise.

Abdi E., Sisakht S.R., Goushbor L., Soufi H., 2012. Accuracy assessment of GPS and surveying technique in forest road mapping. Annals of Forest Research 55(2): 309-317.

Abermann J., Fischer A., Lambrecht A., Geist T., 2010. On the potential of very high-resolution repeat DEMs in glacial and periglacial environments. Cryosphere 4(1): 53-65. DOI: 10.5194/tc-4-53-2010

Anonymous, 2000. Legea nr. 5 din 2000 privind aprobarea Planului de amenajare a teritoriului naţional - Secţiunea a III-a - zone protejate [Law no. 5/2000 on approval of the national territorial arrangement Plan-Section III-protected areas]. Monitorul Oficial al României: 152(12 Aprilie), partea I.

Anonymous, 2001a. Legea nr. 378 din 2001 pentru aprobarea Ordonanţei Guvernului nr. 43/2000 privind protecţia patrimoniului arheologic şi declararea unor situri arheologice ca zone de interes naţional [Law no. 378/2001 for approving Government Ordinance no. 43/2000 on the protection of cultural heritage and archaeological sites as areas of national interest]. Monitorul Oficial al României: 394(18 Iulie), partea I.

Anonymous, 2001b. Legea nr. 422 din 18 iulie 2001privind protejarea monumentelor istorice [Law no. 422/2001 on the protection of historical monuments]. Monitorul Oficial al României: 407 (24 Iulie), partea I.

Anonymous, 2002. Legea nr. 451 din 2002 pentru ratificarea Convenţiei Europene a Peisajului [Law no. 451/2002 for ratifying the European Landscape Convention]. Monitorul Oficial al României: 536(23 Iulie), partea I.

Ardevan R., 1998. Viața municipală în Dacia romană. Editura Mirton, Timișoara, 624 p.

Axelsson P., 2000. DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing 33: 110-117.

Azizi Z., Najafi A., Sadeghian S., 2014. Forest road detection using LiDAR data. Journal of Forestry Research 25(4): 975-980. DOI: 10.1007/s11676-014-0544-0

Bajusz I., 2011. Amfiteatrul de la Porolissum şi amfiteatrele din provinciile romane de la Dunărea de mijloc. Editura Societatea Muzeului Ardelean [The amphitheater from Porolissum and the amphitheaters from the Roman provinces of the Middle Danube. Transylvanian Museum Society Publishing House], Cluj-Napoca, 167 p.

Bennett R. 2012. A comparison of visualization techniques for models created from airborne laser scanned data. Archaeological Prospection 19: 41-48. DOI: 10.1002/arp.1414

Bennett R., Cowley D., De Laet V., 2014. The data explosion: tackling the taboo of automatic feature recognition in airborne survey data. Antiquity 88: 896-905. DOI: 10.1017/S0003598X00050766

Birks J.H.B., 2005. Mind the Gap: how open were European primeval forests? Trends in Ecology and Evolution 20 (4): 154-156. DOI: 10.1016/j.tree.2005.02.001

Bollandsås O.M., Risbøl O., Ene L.T., Nesbakken A., Gobakken T., Næsset E., 2012. Using airborne small-footprint laser scanner data for detection of cultural remains in forests: an experimental study of the effects of pulse density and DTM smoothing. Journal of Archaeological Science 39(8): 2733–2743. DOI: 10.1016/j.jas.2012.04.026

Chauchard S., Guibal F., Carcaillet C., 2013. Land-use legacies: multi-centuries years-old management control of between-stands variability at the landscape scale in Mediterranean mountain forests, France. Journal of Forest Science 1(59): 1-7.

Chew S.C., 2008. Ecological futures: what history can teach us. AltaMira Press, Plymouth, 170 p.

Craven M., Wing M.G., 2014. Applying airborne LiDAR for forested road geomatics. Scandinavian Journal of Forest Research 29(2): 174-182. DOI: 10.1080/02827581.2014.881546

Cullotta S., Bončina A., Carvalho-Ribeiro S.M., Chauvin C., Farcy C., Kurttila M., Maetzke F.G., 2014. Forest planning across Europe: the spatial scale, tools, and inter-sectoral integration in land-use planning. Journal of Environmental Planning and Management 58(8): 1384-1411. DOI: 10.1080/09640568.2014.927754

Dalponte M., Ørka H.O., Ene L.T., Gobakken T., Næsset E., 2014. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sensing of Environment 140: 306-317. DOI: 10.1016/j.rse.2013.09.006

Dambrine E., Dupouey J.L., Laut L., Humbert L., Thinon M., Beaufils T., Richard H., Laüt L., 2007. Present forest biodiversity patterns in France related to former Roman agriculture. Ecology 88(6): 1430–1439. DOI: 10.1890/05-1314

Davis O., 2012. Processing and working with LiDAR data in ArcGIS : A practical guide for archaeologists. The Royal Commission on the Ancient and Historical Monuments of Wales. Web: http://www.rcahmw.gov.uk/media/259.pdf. Accessed: 20 January 2016.

Direcţia Topografică Militară, 1957. Harta topografică a României, foaia: L-34-35-A-d, scara 1:25.000. [Military Topographic Directorate, 1957. Topographic map of Romania, sheet: L-34-35-A-d, scale 1:25.000.]

Edson C., Wing M.G., 2011. Airborne Light Detection and Ranging (LiDAR) for individual tree stem location, height, and biomass measurements. Remote Sensing 3: 2494-2528. DOI: 10.3390/rs3112494

ESRI (Environmental Systems Research Institute), 2011. ArcGIS Help. Web: http://resources.arcgis.com/en/help/main/10.1/index.html#//00660000000p000000. Accessed: 15 January 2016.

Feurdean A., 2010. Forest conservation in a changing world: natural or cultural? Example from the Western Carpathians forests, Romania. Studia Universitatis Babes-Bolyai, Geologia 55(1): 45-48. DOI: 10.5038/1937-8602.55.1.6

Foster D., Swanson F., Aber J., Burke I., Brokaw N., Tilman D., Knapp A., 2003. The importance of land-use legacies to ecology and conservation. BioScience 53(1): 77-88. DOI: 10.1641/0006-3568(2003)053[0077:TIOLUL]2.0.CO;2

Fraterrigo J.M., 2013. Landscape Legacies. Encyclopedia of Biodiversity 4: 524-530. DOI: 10.1016/b978-0-12-384719-5.00388-9

García M., Riaño D., Chuvieco E., Danson F.M., 2010. Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data. Remote Sensing of Environment 114: 816–830. DOI: 10.1016/j.rse.2009.11.021

Grindean R., Tanţău I., Fărcaş S., Panait A., 2014. Middle to late holocene vegetation shifts in the NW Transylvanian lowlands (Romania). Studia Universitatis Babes-Bolyai, Geologia 59(1): 29-37. DOI: 10.5038/1937-8602.59.1.2

Gudea N., 1988. Porolissum. Cheia de boltă a apărării Daciei Porolissensis. [Porolissum. The keystone of Dacia Porolissensis defence.] Acta Musei Porolissensis 12:195-214.

Gudea N., 1989. Porolissum. Un complex arheologic daco-roman la marginea de nord a Imperiului Roman. [Porolissum. A Dacian-Roman archaeological complex at the northern border of the Roman Empire.] Acta Musei Porolissensis 13: 1-1178.

Gudea N., 1996. Porolissum. Un complex daco-roman la marginea de nord a Imperiului Roman II. Vama romană. Monografie arheologică. Editura Biblioteca Musei Napocensis, [Porolissum. A Dacian-Roman complex at the northern border of the Roman Empire II. The Roman customs house. Archaeological monography. Biblioteca Musei Napocensis Publishing House], Cluj-Napoca, 449 p.

Harpold A.A., Marshall J.A., Lyon S.W., Barnhart T.B., Fisher B.A., Donovan M., Brubaker K.M., Crosby C.J., Glenn N.F., Glennie C.L., Kirchner P.B., Lam N., Mankoff K. D, McCreight J.L., Molotch N.P., Musselman K.N., Pelletier J., Russo T., Sangireddy H., Sjöberg Y., Swetnam T., West N., 2015. Laser vision: lidar as a transformative tool to advance critical zone science. Hydrology & Earth System Sciences 19: 2881–2897. DOI: 10.5194/hess-19-2881-2015

Hightower J., Butterfield A., Weishampel J., 2014. Quantifying ancient Maya land use legacy effects on contemporary rainforest canopy Structure. Remote Sensing 6(11): 10716–10732. DOI: 10.3390/rs61110716

Historical Maps of the Habsburg Empire., 1769-1773. Web: http://mapire.eu/en/. Accessed: 20 December 2015.

Hutchinson M.F., 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology 106: 211-232. DOI: 10.1016/0022-1694(89)90073-5

Hyyppä J., Yu X., Hyyppä H., Vastaranta M., Holopainen M., Kukko A., Kaartinen H., Jaakkola A., Vaaja M., Koskinen J., Alho P., 2012. Advances in forest inventory using airborne laser scanning. Remote Sensing 4: 1190-1207. DOI: 10.3390/rs4051190

Lee S.J., Jung R.K., Yun S.C., 2013. GIScience & Remote Sensing the extraction of forest CO2 storage capacity using high-resolution airborne Lidar data. GIScience & Remote Sensing 50 (2): 154-171.

Lefsky M.A., Turner D.P., Guzy M., Cohen W.B., 2005. Combining Lidar estimates of aboveground biomass and Landsat estimates of stand age for spatially extensive validation of modeled forest productivity. Remote Sensing of Environment 95: 549-558. DOI: 10.1016/j.rse.2004.12.022

Mikusiński G., Blicharska M., Antonson H., Henningsson M., Göransson G., Angelstam P., Seiler A., 2013. Integrating ecological, social and cultural dimensions in the implementation of the landscape convention. Landscape Research 38(3): 384-393. DOI: 10.1080/01426397.2011.650629

Opreanu C.H., 1998. Dacia Romană şi Barbaricum. Editura Mirton, [Roman Dacia and the Barbaricum. Mirton Publishing House] Timişoara, 230 p.

Opreanu C.H., Lăzărescu V.A., 2012. Seeing the Unseen. Landscape archaeology on the northern frontier of the Roman Empire at Porolissvm (Romania). Ephemeris Napocensis 22: 356-366.

Opreanu C.H., Lăzărescu V.A., Roman A., Ursu T.M., Fărcaş S., 2014. New light on a Roman Fort based on a LiDAR survey in the forested landscape from Porolissvm. Ephemeris Napocensis 24: 71-86.

Opreanu C.H., Lăzărescu V.A., Ştefan D., 2013. Noi cercetări la Porolissum. [New research at Porolissum.] Analele Banatului 21: 83-106.

Opreanu C.H., Lăzărescu, V.A., Ştefan D., 2013. Recent geophysical surveys at Porolissum. In Stavilă A., Micle D., Cîntar A., Floca C., Forţiu S. (eds.), Interdisciplinaritate în arheologie şi istorie. ArheoVest JATEPress, Timişoara, pp. 509-524.

Paki A., 1988. Populaţia Daciei Porolissensis. I. Porolissum, Acta Musei Porolissensis 12: 215-226.

Popescu S.C., 2007. Estimating biomass of individual pine trees using airborne Lidar. Biomass and Bioenergy 31(9): 646-655. DOI: 10.1016/j.biombioe.2007.06.022

Popescu S.C., Wynne R.H., 2004. Seeing the trees in the forest: Using Lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering & Remote Sensing 70(5): 589-604. DOI: 10.14358/PERS.70.5.589

Popescu S.C., Wynne R.H., Nelson R.F., 2003. Measuring individual tree crown diameter with Lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal of Remote Sensing 29(5): 564-577. DOI: 10.5589/m03-027

Rieger W., Kerschner M., Reiter T., Rottensteiner F., 1999. Roads and buildings from laser scanner data within a forest enterprise. International Archives of Photogrammetry and Remote Sensing 32: 185-91.

Risbøl O., Briese C., Doneus M., Nesbakken A., 2015. Monitoring cultural heritage by comparing DEMs derived from historical aerial photographs and airborne laser scanning. Journal of Cultural Heritage 16(2): 202-209. DOI: 10.1016/j.culher.2014.04.002

Risbøl O., Gjertsen A.K., Skare K., 2006. Airborne laser scanning of cultural remains in forests: some preliminary results from a Norwegian project. Bar International Series 1568: 107-112.

Ritter E., 2011. Forests in landscapes. The myth of untouched wilderness. In: Ritter E. (ed.), New Perspectives on People and Forests. Springer, pp. 11-28. DOI: 10.1007/978-94-007-1150-1_2

Roman A., Ursu T.M., Fărcaş S., Lăzărescu V.A., Opreanu C.H., 2014. Perspectives: remotely sensing the buried past of present vegetation. In: Pfeifer N., Zlinszky A. (eds.), Proceedings of The International Workshop on Remote Sensing and GIS for Monitoring of Habitat Quality. Vienna University of Technology, Vienna, pp. 108-112.

Roman A., Ursu, T.M., Fărcaş S., Lăzărescu V.A., Opreanu C.H., 2015. Using airborne LiDAR for detection and morphologic analysis of waterbodies obscured by the forest canopy. Transylvanian Review of Systematical and Ecological Research. The Wetlands Diversity 17(1): 1-14.

Roman A., Ursu T.M., Lăzărescu V.A., Opreanu C.H., 2016. Multi-sensor surveys for interdisciplinary landscape analysis and archaeological feature detection at Porolissum. In: Opreanu C.H., Lăzărescu V.A. (eds.) Landscape Archaeology on the Northern Frontier of the Roman Empire at Porolissum. An Interdisciplinary Approach. Mega Publishing House, Cluj-Napoca, pp. 237-261.

Roman A., Ursu T.M., Lăzărescu V.A., Opreanu C.H., Fărcaş S., 2017. Visualization techniques of ALS-derived DTM in forested steep terrain: A case study for the recovery of unknown underground archaeological remains. Geoarchaeology-An International Journal. (In press).

Rosch M., Fischer E., 2000. A radiocarbon dated Holocene pollen profile from the Banat Mountains (Southwestern Carpathians, Romania). Flora 195(3): 277-286.

Saeys W., Lenaerts B., Craessaerts G., De Baerdemaeker J., 2009. Estimation of the crop density of small grains using LiDAR sensors. Biosystems Engineering 102(1): 22-30. DOI: 10.1016/j.biosystemseng.2008.10.003

Sălăgean T., 2006. Ţara lui Gelou: contribuţii la istoria Transilvaniei de Nord în secolele IX-XI, Editura Argonaut, [The country of Gelou: contributions to the history of northern Translylvania in the centuries IX-XI, Argonaut Publishing House], Cluj-Napoca, 236 p.

Scazzosi L., 2004. Reading and assessing the landscape as cultural and historical heritage. Landscape Research 29(4): 335-351. DOI: 10.1080/0142639042000288993

Schwarz P.A., Fahey T.J., Martin C.W., Siccama T.G., Bailey A., 2001. Structure and composition of three northern hardwood-conifer forests with differing disturbance histories. Forest Ecology and Management 144:201-212. DOI: 10.1016/S0378-1127(00)00371-6

Sofia G., Dalla Fontana G.D., Tarolli P., 2014. High-Resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains. Hydrological Processes 28(4): 2046-2061. DOI: 10.1002/hyp.9727

Štular B., 2011. The use of Lidar-derived relief models in archaeological topography. The Kobarid Region (Slovenia) case study. Arheoloski Vestnik 62: 393-432.

Tamba D.G., 2008. Porolissum: aşezarea civilă (vicus Militaris) a Castrului Mare. Observaţii în legătură cu aşezările civile ale castrelor de trupe auxiliare din Dacia Porolissensis. Editura Mega [Porolissum: the civian settlement (vicus Militaris) of the Big Fort. Observations regarding the civilian settlements of the auxiliary troupes from Dacia Porolissensis. Mega Publishing House], Cluj-Napoca, 450 p.

Tanţǎu I., Feurdean A., De Beaulieu J.L., Reille M., Fǎrcaş S., 2014. Vegetation sensitivity to climate changes and human impact in the Harghita mountains (Eastern Romanian Carpathians) over the past 15 000 Years. Journal of Quaternary Science 29(2): 141-152. DOI: 10.1002/jqs.2688

Tanțău I., Reille M., de Beaulieu J.L., Fărcaș S., 2006. Late glacial and Holocene vegetation history in the southern part of Transylvania (Romania): Pollen analysis of two sequences from Avrig. Journal of Quaternary Science 21(1): 49-61. DOI: 10.1002/jqs.937

Tanţău I., Reille M., de Beaulieu J.L., Fărcaş S., Goslar T., Paterne M., 2003. Vegetation history in the Eastern Romanian Carpathians: Pollen analysis of two sequences from the Mohoş Crater. Vegetation History and Archaeobotany 12(2): 11-25. DOI: 10.1007/s00334-003-0015-6

Tarolli P., 2014. High-resolution topography for understanding earth surface processes: Opportunities and challenges. Geomorphology 216: 295-312. DOI: 10.1016/j.geomorph.2014.03.008

Tarolli P., Sofia G., Dalla Fontana G., 2012. Geomorphic features extraction from high-resolution topography: Landslide crowns and bank erosion. Natural Hazards 61(1): 65-83. DOI: 10.1007/s11069-010-9695-2

Tyrrell L.E., Crow T. R., 1994. Structural characteristics of old-growth hemlock-hardwood forests in relation to age. Ecology 75: 370-386. DOI: 10.2307/1939541

UN Educational, Scientific and Cultural Organisation (UNESCO), 1972. Convention Concerning the Protection of the World Cultural and Natural Heritage, 16 November 1972. Web: http://www.refworld.org/docid/4042287a4.html. Accessed 28 January 2016.

Unger D.R., Hung I.K., Brooks R., Williams H., 2014. Estimating number of trees, tree height and crown width using Lidar data. GIScience & Remote Sensing 51(3): 227-238. DOI: 10.1080/15481603.2014.909107

Whelley P.L., Glaze L.S., Calder E.S., Harding D.J., 2014. LiDAR-derived surface roughness texture mapping: Application to Mount St. Helens pumice plain deposit analysis. IEEE Transactions on Geoscience and Remote Sensing 52(1): 426-438. DOI: 10.1109/TGRS.2013.2241443

White R.A., Dietterick B.C., Mastin T., Strohman R., 2010. Forest roads mapped using LiDAR in steep forested terrain. Remote Sensing 2(4): 1120-1141. DOI: 10.3390/rs2041120

Wulder M.A., Bater C.W., Coops N.C., Hilker T., White J.C., 2008. The role of LiDAR in sustainable forest management. The Forestry Chronicle 84(6): 807-826. DOI: 10.5558/tfc84807-6

Zakšek K., Oštir K., Kokalj Ž., 2011. Sky-View Factor as a relief visualization technique. Remote Sensing 3: 398-415. DOI: 10.3390/rs3020398

Zerbe S., 2004. Influence of historical land use on present-day forest patterns: A case study in south-western Germany. Scandinavian Journal of Forest Research 19(3): 261-273. DOI: 10.1080/02827580410029291


No Supplimentary Material available for this article.
No metrics available for this article.