Climate as possible reproductive barrier in Pinus radiata (D. Don) interspecific hybridisation

Authors

  • Hannél Ham Department of Forest and Wood Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
  • Ben du Toit Department of Forest and Wood Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
  • Anna-Maria Botha Department of Forest and Wood Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa & Genetics Department, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa
  • Arnulf Kanzler Department of Forest and Wood Science, Stellenbosch University, Private Bag X1, Stellenbosch, 7602, South Africa & Sappi Forest Research, P.O. Box 473, Howick 3290, South Africa

DOI:

https://doi.org/10.15287/afr.2016.801

Keywords:

temperature, dew point, relative humidity, Pinus radiata, pollination

Abstract

Historically, interspecific hybridisation with Pinus radiata D. Don had limited success. The effect of environmental conditions and position of pollination bags in the tree were investigated as possible hybridisation barriers. The study was conducted in a P. radiata seed orchard in the Southern Cape (South Africa). Field data were compared to the climatic conditions at natural and commercial provenances of seven Mesoamerican Pinus species identified as possible hybrid partners. In vitro pollen studies were used to confirm whether interspecific crosses with P. radiata might be feasible within predefined climatic parameters. The temperature ranges for both top and northern side of P. radiata pine trees in the seed orchard was similar to the natural distribution of P. radiata, P. elliottii Engelm. and P. taeda L. in the USA. Results suggested that pollen of P. elliottii and P. taeda might be more suited to result in the successful pollination of P. radiata than the other Mesoamerican pine species tested in this study.  Furthermore, the combination of minimum temperature and precipitation also showed a closer correlation to successful hybridisation with P. radiata for both P. elliotii and P. taeda. However, pollen tube elongation studies did not support these results, suggesting that mean temperature might not be the only determining factor of hybridisation success. Three circadian temperature models that mimic natural conditions were developed for Karatara and Sabie (Tweefontein, Witklip and Spitskop).  These models will be tested in future in vitro studies to further evaluate temperature fluctuations between day and night regimes as a possible reproductive barrier limiting hybridisation success between P. radiata and other Mesoamerican pine species.

References

Alzoti P.G., Kilimis K., Gallios P., 2010. Temporal and spatial variation of flowering among Pinus nigra Arn. Clones under changing climatic conditions. Forest Ecology and Management 259: 786-797. DOI: 10.1016/j.foreco.2009.06.029

Bannister M.H., 1958. Evidence of hybridization between Pinus attenuata and P. radiata in New Zealand. In Transactions of the Royal Society of New Zealand (85 (2): 217-227). The Society.

Barnes R.D., Mullin L.J., 1978. Three-year height performance of Pinus elliottii Engelm. var. elliottii x P. taeda L. hybrid families on three sites in Rhodesia. Silvae Genetica 27: 217-223.

Bester C., van der Merwe L.H.C., Malema JL., 2000. Controlled pollination in Pinus patula: constraints and possible solutions. South Africa Forestry Journal 198: 109-112. DOI: 10.1080/10295925.2000.9631285

Bioclim, 2016. Historical weather data. WorldClim – Global Climatic Data. Web: http://www.worldclim.org/bioclim. Accessed 1 October 2016.

Boyer W.D., 1981. Longleaf pine cone production related to pollen density. In: Kraus J. (ed.), Seed yield from southern Pine seed orchards. Georgia Forest Research Council, Macon, GA, USA, pp 8-14.

Bramlett D.L., O'Gwynn C.H., 1981. Controlled Pollination. In: Franklin EC (ed), Pollen Management Handbook. Agriculture Handbook Number 587, United States Department of Agriculture, Washington, pp 44-57.

Burdon R.D., 1977. Photoperiodic effect on pollen shedding in Pinus radiata? New Zealand Journal of Forest Science 7: 214-215.

Chira E., Berta F., 1965. Eine der ursachen der nichtkreuzungsfähigkeit von arten aus der gattung Pinus [One of the causes of non-crossing ability of species in the genus of Pinus]. Biològia (Bratislava) 20: 600-609.

Cook S.A., Stanley R.G., 1960. Tetrazolium chloride as an indicator of Pine pollen germinability. Silvae Genetica 9: 134-136.

Critchfield W.B., 1975. Interspecific hybridization in Pinus: a summary review. In: Fowler DP, Yeatman C.Y. (eds.), Proceedings of symposium on interspecific and interprovenance hybridization in forest trees. Canada Tree Improvement Association Part II, pp. 99-105.

Cappa E.P., Marcó M., Nikles D.G., Last I.S., 2013. Performance of Pinus elliottii, Pinus caribaeae, their F1, F2 and backcross hybrids and Pinus taeda to 10 years in the Mesopotamia region, Argentina. New Forests 44(2): 197-218. DOI: 10.1007/s11056-012-9311-2

Dickson R.L., 1995. Seed production in Pinus radiata D. Don: Impact of climate and site on numbers of emergent female strobili. PhD Dissertation, University of Canterbury, New Zealand.

Dungey H.S., 2001. Pine hybrids – a review of their use, performance and genetics. Forest Ecology and Management 148: 243-258. DOI: 10.1016/S0378-1127(00)00539-9

Dungey H.S., Carson M.J., Low C.B., King N.G., 2003. Potential and niches for inter-specific hybrids with Pinus radiata in New Zealand. New Zealand Journal of Forest Science 33: 295-318.

Dvorak W.S., Jordon A.P., Hodge G.P., Romero J.L., 2000. Assessing evolutionary relationships of pines in the Oocarpae and Australes subsections using RAPD markers. New Forests 20: 163-192. DOI: 10.1023/A:1006763120982

Dvorak W.S., Potter K.M., Hipkins V.D., Hodge G.R., 2009. Genetic diversity and gene exchange in Pinus oocarpa, a Mesoamerican pine with resistance to the pitch canker fungus (Fusarium circinatum). International Journal of Plant Science 170: 609-626. DOI: 10.1086/597780

Dvorak W.S., 1985. One-year provenance/progeny results of Pinus tecunumanii from Guatemala established in Brazil and Colombia. Commonwealth Forest Review 64: 57-65.

El-Kassaby Y.A., Reynolds S., 1990. Reproductive phenology, parental balance, and supplemental mass pollination in a Sitka-spruce seed-orchard. Forest Ecology and Management 31: 45-54. DOI: 10.1016/0378-1127(90)90110-W

Ellstrand N.C., 2014. Is gene flow the most important evolutionary force in plants? America Journal of Botany 101(5): 737-753. DOI: 10.3732/ajb.1400024

Erasmus S.W., Muller M., van der Rijst M., Hoffman L.C., 2016. Stable isotope ratio analysis: A potential analytical tool for the authentication of South African lamb meat. Food Chemistry 192: 997-1005. DOI: 10.1016/j.foodchem.2015.07.121

Fernando D.D., Lazarro M.D., Owens J.N., 2005. Growth and development of conifer pollen tubes. Sexual Plant Reproduction 18: 149-162. DOI: 10.1007/s00497-005-0008-y

Ferrand J.C.H., 1988. Electric heating units in pollination bags avoid damage to flowers by spring frost. Annales des Sciences Forestieres 45:157-160. DOI: 10.1051/forest:19880205

Gernandt D.S., Lopez G.G., Garcia S.O., Liston A., 2005. Phylogeny and classification of Pinus. Taxon 54: 29-42. DOI: 10.2307/25065300

Greenwood M.S., Schmidtling R.C., 1981. Regulation of catkin production. In: Franklin E.C. (ed.), Pollen management handbook. USDA and Southern Forest Tree Improvement Committee, Agriculture Handbook nr. 587, pp 20-25.

Gruwez R., De Frenne P., De Schrijver A., Leroux O., Vangansbeke P., Verheyen K. 2014. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis). Annales of botany - London 113: 489-500. DOI: 10.1093/aob/mct272

Hagedorn S.F., Raubenheimer G.L., Nel A., 1997. Test results of a pollination bag trial and a pollen viability study for Pinus patula. ICFR Bulletin: 10/1997.

Hagedorn S.F., Raubenheimer G.L., 1996. Flowering and pollination studies of Pinus patula: first results. ICFR Bulletin: 04/1996.

Hagedorn S.F., 2000. The effect of pollination bags on cone survival and seed set in Pinus patula. ICFR Bulletin: 13/2000.

He Y.P., Duan Y.W., Liu J.Q., Smith W.K., 2005. Floral closure in response to temperature and pollination in Gentiana straminea Maxim. (Gentianaceae), an alpine perennial in the Qinghai-Tibetan Plateau. Plant Systematics and Evolution 256: 17-33. DOI: 10.1007/s00606-005-0345-1

Huyn S.K., 1976. Interspecific hybridization in pines with the special reference to Pinus rigida x taeda. Silvae Genetica 25:188-191.

Jett J.B., Frampton J.L., 1990. Effect of rehydration on in vitro germination of loblolly pine pollen. Southern Journal of Applied Forestry 14: 48-51.

Kanzler A., Nel A., Ford C., 2014. Development and commercialisation of the Pinus patula x P. tecunumanii hybrid in response to the threat of Fusarium circinatum. New Forests 45(3): 417-437. DOI: 10.1007/s11056-014-9412-1

Kohler U., Luniak M., 2005. Data inspection using biplots. Stata Journal 5: 208-223.

Krugman S.L., Jenkinson J.L., 1974. Pinus L. Pine. In: Schopmeyer C.S. (ed.), Seeds of woody plants in the United States. US Department of Agriculture, Agriculture Handbook 450, Washington DC, USA, pp 598-638.

Lu P., Derbowka D., 2012. Effects of seedling age on blister rust resistance assessments in eastern white pine and its hybrid backcrosses. Canadian Journal of Forest Research 42: 67-74. DOI: 10.1139/x11-164

Major J.E., Mosseler A., Johnsen K.H., Rajora O.P., Barsi D.C., Kim K-H., Park J-M., Campbell M. 2005. Reproductive barriers and hybridity in two spruces, Picea rubens and Picea mariana, sympatric in eastern North America. Canadian Journal of Botany 83: 163-175. DOI: 10.1139/b04-161

McWilliam J.R., 1959a. Interspecific incompatibility in Pinus. America Journal of Botany 46: 425-433. DOI: 10.2307/2439138

McWilliam J.R., 1959b. Effect of temperature on pollen germination of Pinus and its bearing on controlled pollination. Forest Science 5: 10-17.

Neal P.R., Anderson G.J., 2004. Does the 'old bag' make a good 'wind bag'?: comparison of four fabrics commonly used as exclusion bags in studies of pollination and reproductive biology. Annals of Botany 93:603-607. DOI: 10.1093/aob/mch068

Nel A., van Staden J., 2005. Pollen morphological features of temperature on pollen germination of various Pinus species. South African Journal of Botany 71: 88-94. DOI: 10.1016/S0254-6299(15)30154-X

Ott R.L., Longnecker M., 2001. An introduction to statistical methods and data analysis. 5th Edition Belmont, California: Duxbury Press, USA.

Owens J.N., Bennet J., L'Hirondelle., 2005. Pollination and cone morphology affect cone and seed production in lodgepole pine seed orchards. Canadian Journal of Forest Research 35: 383-400. DOI: 10.1139/x04-176

Owens J.N., Fernando D.D., 2007. Pollination and seed production in western white pine. Canadian Journal of Forest Research 37: 260-274. DOI: 10.1139/x06-220

Peet M.M., Bartholemew M., 1996. Effect of night temperature on pollen characteristics, growth, and fruit set in tomato. Journal of the American Society for Horticultural Science 121: 514-519.

Plomion C., Chagné D., Pot D., Kumar S., Wilcox P.L., Burdon R.D., Prat D., Peterson D.G., Paiva J., Chaumeil P., Vendramin G.G,. Sebastiani F., Nelson C.D., Echt C.S., Savolainen O., Kubisiak T.L., Cervera M.T., de Marìa N., Islam-Faridi M.N., 2007. Pines. In: Kole C. (ed.), Genome Mapping and Molecular Breeding in Plants, Forest Trees (volume 7). Springer. pp 29-92. DOI: 10.1007/978-3-540-34541-1_2

Poynton R.J., 1979. Tree Planting in Southern Africa, Vol. 1. The Pines. Pretoria: Department of Forestry. pp 882.

Rencher A.C., 2002. Methods of Multivariate Analysis. 2nd ed. John Wiley, New York. DOI: 10.1002/0471271357

SAS Institute., 2013. SAS Version 9.2. SAS Institute Inc, SAS Campus Drive, Cary, North Carolina 27513.

Shapiro S.S., Wilk M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52: 591-611. DOI: 10.1093/biomet/52.3-4.591

Sweet G.B., Dickson R.L., Donaldson B.D., Litchwark H., 1992. Controlled pollination without Isolation – a new approach to the management of radiata pine seed orchards. Silvae Genetica 41: 95-99.

Taylor L.P., Hepler P.K., 1997. Pollen germination and tube growth. Annual Review of Plant Physiology and Molecular Biology 48: 461-491. DOI: 10.1146/annurev.arplant.48.1.461

Theron K., 2000. Site requirements and species matching. In: Owen DL (ed), South African Forestry Handbook. SAIF: Pretoria, South Africa, pp 32-44.

Van der Sijde H.A., Roelofsen J.W., 1986. The potential of pine hybrids in South Africa. South Africa Forestry Journal, March: 5-14.

Williams C.G., 2009. Conifer Reproductive Biology. Springer. pp 168. DOI: 10.1007/978-1-4020-9602-0

Williams J.H., 2012. Pollen tube growth rates and the diversification of flowering plant reproductive cycles. International Journal of Plant Science 173: 649-661. DOI: 10.1086/665822

Wright J.A., Shaw M.P.J., Hadebe W., 1991. Genotype x environment interaction in pine hybrid families at four sites in South Africa. Forest Ecology and Management 40: 93-99. DOI: 10.1016/0378-1127(91)90095-D

Young F.W., Faldowski R.A., McFarlane M.M., 1993. Handbook of statistics. Elsevier Science, Amsterdam, Netherlands.

Zobel B., Talbert J., 1984. Applied forest tree improvement. The Blackburn Press, Caldwell, New Jersey, USA. pp 505.

Downloads

Published

2017-05-25

Issue

Section

Research article