Adaptive genetic potential of European silver fir in Romania in the context of climate change


  • Georgeta Mihai “Marin Drăcea” National Institute for Research and Development in Forestry, Department of Forest Genetics and Tree Breeding, Bucharest, Romania
  • Marius-Victor Bîrsan National Meteorological Administration (Meteo Romania), Department of Climatology, Bucharest, Romania
  • Alexandru Dumitrescu National Meteorological Administration (Meteo Romania), Department of Climatology, Bucharest, Romania
  • Alin Alexandru “Marin Drăcea” National Institute for Research and Development in Forestry, Department of Forest Genetics and Tree Breeding, Bucharest, Romania
  • Ionel Mirancea “Marin Drăcea” National Institute for Research and Development in Forestry, Department of Forest Genetics and Tree Breeding, Bucharest, Romania
  • Paula Ivanov “Marin Drăcea” National Institute for Research and Development in Forestry, Department of Forest Genetics and Tree Breeding, Bucharest, Romania
  • Elena Stuparu “Marin Drăcea” National Institute for Research and Development in Forestry, Department of Forest Genetics and Tree Breeding, Bucharest, Romania
  • Maria Teodosiu “Marin Drăcea” National Institute for Research and Development in Forestry, Department of Forest Genetics and Tree Breeding, Bucharest, Romania
  • Mihai Daia National Forest Administration (RNP-Romsilva), Department of Forest Regeneration, Bucharest, Romania



Silver fir, transfer functions, response functions, local adaptation, phenotypic plasticity, climate changes impact


Five provenance tests with twenty-six European silver fir autochthonous populations were used in order to assess the response of populations to climate change. Height growth and diameter at breast height of trees at age 31 years were considered as response variables and eight climate variables as predictors. Climatic variables for the trial sites and for origin location of provenances were calculated from 1961 to 2010. The experiments revealed a large genetic variability within species level and a plastic response to climate change, which certainly has a genetic basis. The transfer to warmer climate has resulted in an increase of the provenances growth, in the trial sites situated on the lower vegetation layer. But growth is significantly influenced by mean annual temperature and annual precipitation of planting site and also by the differences in mean annual temperature, annual precipitation, monthly mean temperature in July and July precipitation between provenance site and test site. These are the climatic factors which should be associated with risk in case of the transfer of forest reproductive materials. The provenance origin should be especially considered if the species will be planted outside of its current climate optimum. The best provenances in terms of total height and diameter at 1.30 m came from origin climate close to site climate, small transfer distances. Based on growth response functions and RCP4.5 scenario, we could project the shifts in species distribution for 2050s and 2100s and identify vulnerable populations.


Aitken S.N., Yeaman S., Holliday J.A., Wang T., Curtis-McLane S., 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1: 95-111. DOI: 10.1111/j.1752-4571.2007.00013.x Aldalo C., Beaulieu J., Bousquet J., 2005. The impact of climate change on growth of local white spruce populations in Quebec. Can.For.Ecol.Manage 205: 169-182. DOI: 10.1016/j.foreco.2004.10.045 Becker H.C., Leon J., 1988. Stability analysis in plant breeding. Plant Breeding 101: 1-23. DOI: 10.1111/j.1439-0523.1988.tb00261.x Becker M., 1989. The role of climate on present and past vitality of silver fir forest in the Vosges mountains of Northeastern France. Canadian Journal of Forest Research 19: 1110-1117. DOI: 10.1139/x89-168 Birsan M.V., 2015. Trends in Monthly Natural Streamflow in Romania and Linkages to Atmospheric Circulation in the North Atlantic. Water Resources Management 29(9): 3305-3313. DOI: 10.1007/s11269-015-0999-6 Birsan M.V., Dumitrescu A., 2014. Snow variability in Romania in connection to large-scale atmospheric circulation. International Journal of Climatology 34: 134-144. DOI: 10.1002/joc.3671 DOI: 10.1002/joc.3671 Birsan M.V., Dumitrescu A., Micu D.M., Cheval S., 2014. Changes in annual temperature extremes in the Carpathians since AD 1961. Natural Hazards 74(3): 1899–1910. DOI: 10.1007/s11069-014-1290-5 Birsan M.V., Marin L., Dumitrescu A., 2013. Seasonal changes in wind speed in Romania. Romanian Reports in Physics 65(4): 1479–1484. Busuioc A., Birsan M.V., Carbunaru D., Baciu M., Orzan A., 2016. Changes in the large-scale thermodynamic instability and connection with rain shower frequency over Romania. Verification of the Clausius–Clapeyron scaling. International Journal of Climatology 36(4): 2015–2034. DOI: 10.1002/joc.4477Busuioc A., Dobrinescu A., Birsan M.V., Dumitrescu A., Orzan A., 2015. Spatial and temporal variability of climate extremes in Romania and associated large-scale mechanisms. International Journal of Climatology 35(7): 1278–1300. DOI: 10.1002/joc.4054 Carter K.K., 1996. Provenance tests as indicators of growth response to climate change in 10 north temperate tree species. Canadian Journal of Forest Research 26: 1089-1095. DOI: 10.1139/x26-120 Cheval S., Busuioc A., Dumitrescu A., Birsan M.V., 2014a. Spatiotemporal variability of meteorological drought in Romania using the standardized precipitation index (SPI). Climate Research 60: 235–248. DOI: 10.3354/cr01245 Cheval S., Birsan M.V., Dumitrescu A., 2014b. Climate variability in the Carpathian Mountains Region over 1961–2010. Global and Planetary Change 118: 85–96. DOI: 10.1016/j.gloplacha.2014.04.005 Cheval S., Dumitrescu A., Birsan M.V., 2017. Variability of the aridity in the South-Eastern Europe over 1961–2050. Catena 151: 74–86. DOI: 10.1016/j.catena.2016.11.029Dobrinescu A., Busuioc A., Birsan M.V., Dumitrescu A., 2015. Changes in thermal discomfort indices in Romania and responsible large-scale mechanisms. Climate Research 64(3): 213–226. DOI: 10.3354/cr01312 Doniță N., Chiriță C.D., Stănescu V., 1990. Tipuri de ecosisteme forestiere [Forest ecosystems types]. Editura Tehnică Silvică, Bucharest, 496 p. Dumitrescu A., Birsan M.V., 2015. ROCADA: a gridded daily climatic dataset over Romania (1961–2013) for nine meteorological variables. Natural Hazards 78(2): 1045–1063. DOI: 10.1007/s11069-015-1757-z Dumitrescu A., Bojariu R., Birsan M.V., Marin L., Manea A., 2015. Recent climatic changes in Romania from observational data (1961-2013). Theoretical and Applied Climatology 122(1-2): 111–119. DOI: 10.1007/s00704-014-1290-0 Dumitrescu A., Birsan M.V., Manea A., 2016. Spatio-temporal interpolation of sub-daily (6- hour) precipitation over Romania for the period 1975-2010. International Journal of Climatology 36(3): 1331–1343. DOI: 10.1002/joc.4427 Dumitrescu A., Birsan M.V., Nita I.A., 2017. A Romanian daily high-resolution gridded dataset of snow depth (2005-2015). Geofizika 34(2): 275–295. DOI: 10.15233/gfz.2017.34.14 Enescu V., Doniță N., 1988. Zonele de recoltare a semințelor forestiere în R.S. România [Provenance regions for harvesting the seeds in R.S. Romania]. Redacția de Propagandă Tehnică Agricolă, Seria II, Bucharest, 60 p. EFI, 2008. Impacts of Climate Change on European Forests and Options for Adaption. Report of the European Forest Institute to the European Commission Directorate-General for Agriculture and Rural Development. Joensuu. Farjat A. E., Isik F., Reich B. J., Whetten R. W., McKeand S. E., 2015. Modeling climate change effects on the height growth of Loblolly Pine. Forest Science 61 (4): 703-715. DOI: 10.5849/forsci.14-075 Ficko A., Poljanec A., Boncina A., 2011. Do changes in spatial distribution, structure and abundance of silver fir (Abies alba Mill.) indicate its decline? Forest Ecology and Management 261: 844-854. DOI: 10.1016/j.foreco.2010.12.014 Gazol A., CamareroJ.J., 2016. Functional diversity enhances Silver fir growth resilience to an extreme drought. Journal of Ecology 104(4): 1063-1075. DOI: 10.1111/1365-2745.12575 Jump A.S., Hunt J.M., Penuelas J., 2006. Rapid climate change-related growth decline at the southern edge of Fagus sylvatica. Global Change Biology 12: 2163-2174. DOI: 10.1111/j.1365-2486.2006.01250.x Kapeller S., Lexer M.J., Geburek T., Hiebl J., Schueler S., 2012. Intraspecific variation in climate response of Norway spruce in the Eastern Alpine range: Selecting appropriate provenances for future climate. Forest Ecology and Management 271: 46-57. DOI: 10.1016/j.foreco.2012.01.039 Kremer A., 2007. How well can existing forests withstand climate change. Climate change and forest genetic diversity. Implications for sustainable forest management in Europe. In: Koskela J., Buck A., Teissier du Cros E. (eds.), Bioversity International, Rome, pp. 3-17. Lindner M., 2000. Developing adaptive forest management strategies to cope with climate change. Tree Physiology 20: 299-307. DOI: 10.1093/treephys/20.5-6.299 Manea A., Birsan M.V., Tudorache G., Cărbunaru F., 2016. Changes in the type of precipitation and associated cloud types in Eastern Romania (1961-2008). Atmospheric Research 169: 357–365. DOI: 10.1016/j.atmosres.2015.10.020. Marcu M., 1983. Meteorologie și climatologie forestieră [Forest meteorology and climatology]. Editura Ceres, Bucharest, 250 p. Marin L., Birsan M.V., Bojariu R., Dumitrescu A., Micu D.M., Manea A., 2014. An overview of annual climatic changes in Romania: trends in air temperature, precipitation, sunshine hours, cloud cover, relative humidity and wind speed during the 1961–2013 period. Carpathian Journal of Earth and Environmental Sciences 9(4): 253–258. Matyas C., 1994. Modelling climate change effects with provenance test data. Tree Physiology 14: 797-804. DOI: 10.1093/treephys/14.7-8-9.797 Mihai G., Mirancea I., Duță C., 2014. Variation of the quantitative traits in a progeny test of Abies alba (Mill.) at the nursery stage. Silvae Genetica 63(6):275-284. DOI: 10.1515/sg-2014-0035 Mihai G., Mirancea I., 2016. Age trends in genetic parameters for growth and quality traits in Abies alba. iForest 9: 954-959. DOI: 10.3832/ifor 1766-009. NSI, 2015. National Statistic Inventory, Pârnuță Gh., Budeanu M., Stuparu E., 2012. National Catalog of basic materials for producing the forest reproductive materials. Editura Silvică, Bucharest, 334 p. Price T.D., Qvarnström A., Irwin D.E., 2003. The role of phenotypic plasticity in driving genetic evolution. Proceedings of the Royal Society London 270: 1433-1440. DOI: 10.1098/rspb.2003.2372 Rehfeldt G.E., 1994a. Adaptation of Picea englemannii populations to the heterogeneous environments of the Intermountain West. Can.J.Bot 72: 1197-1208. DOI: 10.1139/b94-146 Rehfeldt G.E., Tchebakova N.M., Barnhardt L.K., 1999a. Efficacy of climate transfer functions: introduction of Eurasian populations of Larix into Alberta. Canadian Journal of Forest Research 29: 1660-1668. DOI: 10.1139/x99-143 Rehfeldt G.E., Ying C.C., Spittlehouse D.L., Hamilton D.A., 1999b. Genetic responses to climate in Pinus contorda: niche breadth, climate change, and reforestation. Ecological Monographs 69: 375-407. DOI: 10.1890/0012-9615(1999)069[0375:GRTCIP]2.0.CO;2 Rweyongeza D.M., Yang R.C., Dhir N.K., Barnhardt L.K., Hansen C., 2007. Genetic variation and climatic impacts on survival and growth of white spruce in Alberta, Canada. Silvae Genetica 56: 3-4. DOI: 10.1515/sg-2007-0018 Salinger M.J., 2005. Climate variability and change: past, present and future-an overview. Climatic Change 70: 9-29. DOI: 10.1007/s10584-005-5936-x Savolainen O., Bokma F., Garcia-Gil M.R., Komulainen P., Repo T., 2004. Genetic variation in cessation of growth and frost hardiness and consequences for adaptations of Pinus sylvestris to climatic changes. Forest Ecology and Management 197: 79-89. DOI: 10.1016/j.foreco.2004.05.006 Schmidtling R. C., 1994. Use of Provenance Tests to Predict Response to Climate Change: Loblolly Pine and Norway Spruce. Tree Physiology 14 (7-8-9): 805-17. Șofletea N., Curtu L., 2001. Dendrologie [Dendrology]. Editura Pentru Viață, Brașov, 296 p. Thomson A.M.,Calvin K.V., Smith S.J., Kyle G.P., Volke A., Patel P., Delgado-Arias S., Bond-Lamberty B., Wise M.A., Clarke L.E., Edmonds J.A., 2011. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change 109: 77-94. DOI: 10.1007/s10584-011-0151-4 Wang T., O'Neill G.A., Aitken S.N., 2010. Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecological Applications 20 (1): 153-163. DOI: 10.1890/08-2257.1 Weisgerber H., Sindelar J., 1992. IUFRO's role in coniferous tree improvement. History, results and future trends of research and international cooperation with European larch. Silvae Genetica 41 (3): 150-160. Wrike S.G., 1962. Ube eine mthodezur Erfussung der Okologischen streubreite in Feldversuchen. Z. Pflanzenzuechi 47: 92-96. Zang C., Hartl-Meier C., Dittmar C., Rothe A., Menzel A., 2014. Patterns of drought tolerance in major European temperate forest trees: climatic driversand levels of variability. Global Change Biology 20: 3767-3779. DOI: 10.1111/gcb.12637






Research article