Monitoring of soil moisture in Long-Term Ecological Research (LTER) sites of Romanian Carpathians


  • Lucian Dinca “Marin Drăcea“ National Research and Development Institute in Forestry, 13 Closca Street, 500040 Brașov, Romania
  • Ovidiu Badea “Marin Drăcea“ National Research and Development Institute in Forestry, 128 Eroilor Av., 077190 Voluntari, Ilfov, Romania
  • Gheorghe Guiman Marin Drăcea“ National Research and Development Institute in Forestry, 10 Principală Street, 117470 Mihăești, Romania
  • Cosmin Braga “Marin Drăcea“ National Research and Development Institute in Forestry, 10 Principală Street, 117470 Mihăești, Romania
  • Vlad Crisan “Marin Drăcea“ National Research and Development Institute in Forestry, 13 Closca Street, 500040 Brașov, Romania
  • Victor Greavu Faculty of Silviculture and Forest Engineering, Transilvania University of Brașov, 1 Șirul Beethoven, 500123 Brașov, Romania
  • Gabriel Murariu Chemistry, Physics and Environment Department, “Dunărea de Jos” University of Galați, 47 Domnească, 800008 Galați, Romania
  • Lucian Georgescu Chemistry, Physics and Environment Department, “Dunărea de Jos” University of Galați, 47 Domnească, 800008 Galați, Romania



soil moisture, sensor, forest, precipitation, temperature


Understanding soil moisture and its relationship with different climatic and soil characteristics is essential for better analysing the interactions between forest and soil water dynamics, allowing us to more precisely predict climatic changes. The present paper investigates the temporal variability of soil moisture in three different forest ecosystems (LTER – long term ecological research site) with the same soil type (Eutric Cambisol).  Soil moisture was measured daily from 2011 to 2016 by using three sensors at three different depths (20, 40, 70 cm). We identified the interactions between soil properties, vegetation type, local climatic conditions and soil moisture. In order to establish the temporal variability of the soil moisture content, we have applied two procedures, namely the Fourier series and the neural network fitting. A high variability in time and depth for soil volumetric water content was identified. The highest soil moisture levels were recorded at higher depths (70 cm) for almost all surfaces, with the exception of the Fundata surface because of the occurrence of limestone. In the mountainous areas, with higher precipitation (Fundata and Predeal sites), volumetric soil water content was mainly influenced by soil physical characteristics. Soil moisture levels below the drought level were only recorded for the Stalpeni site from September to October 2012. There was a delay between the precipitation event and soil humidification of 0.4-0.8 time units (days). We also found a significant correlation between soil moisture and soil texture and a weak correlation with vegetation type. Temperature influenced soil moisture levels at almost all depths, while precipitation only had an impact when there was a delay of 1 or 2 days. Our results can serve as a scientific base in the monitoring and analysing of soil moisture against the background of a changing climate.


Badea O., Bytnerowicz A., Silaghi D., Neagu S., Barbu I., Iacoban C., Iacob C., Guiman G., Preda E., Seceleanu I., Oneata M., Dumitru I., Huber V., Iuncu H., Dinca L., Leca S., Taut I. 2012. Status of the Southern Carpathian forests in the long-term ecological research network. Environmental monitoring and assessment 184(12): 7491-7515. DOI: 10.1007/s10661-011-2515-7

Baroni G., Ortuani B., Facchi A., Gandolfi C. 2013. The role of vegetation and soil properties on the spatio-temporal variability of the surface soil moisture in a maize-cropped field. Journal of Hydrology 489: 148-159. DOI: 10.1016/j.jhydrol.2013.03.007

Bréda N., Granier A., Barataud F., Moyne C., 1995. Soil water dynamics in an oak stand. Plant and Soil 172(1): 17-27. DOI: 10.1007/BF00020856

Brocca L., Melone F., Moramarco T., Morbidelli R. 2010. Spatial‐temporal variability of soil moisture and its estimation across scales. Water Resources Research 46(2). DOI: 10.1029/2009WR008016

Burada A., Teodorof L., Despina C., Seceleanu-Odor D., Tudor M., Ibram O., Tudor M. 2017. Trace elements in fish tissue with commercial value of the Danube Delta Biosphere Reserve. Environmental Engineering & Management Journal (EEMJ) 16(3). DOI: 10.30638/eemj.2017.075

Cools N., De Vos B. 2010. 1st FSCC soil physical ringtest 2009. Brusel, Instituut voor Natuur-en Bosonderzoek (INBO).

Daly E., Porporato A. 2005. A review of soil moisture dynamics: from rainfall infiltration to ecosystem response. Environmental engineering science 22(1): 9-24. DOI: 10.1089/ees.2005.22.9

Dincă L., Lucaci D., Iacoban C., Ionescu M., 2012. Metode de analiză a proprietăţilor şi soluţiei solurilor. Editura Tehnică Silvică, 173 p.

Dincă L., Sparchez G., Dincă M. 2014. Romanian's forest soils gis map and database and their ecological implications. Carpathian Journal of Earth and Environmental Sciences 9(2): 133-142.

Dincă L.C., Dincă M., Vasile D., Sparchez G., Holonec L., 2015. Calculating organic carbon stock from forest soils. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 43(2): 568-575. DOI: 10.15835/nbha.43.2.10141

Dirmeyer P. A., Wu J., Norton H. E., Dorigo W. A., Quiring S. M., Ford T. W., Balsamo G. 2016. Confronting weather and climate models with observational data from soil moisture networks over the United States. Journal of hydrometeorology 17(4): 1049-1067. DOI: 10.1175/JHM-D-15-0196.1

Garcia-Estringana P., Latron J., Molina A. J., Llorens P. 2013. Seasonal and spatial variability of rainfall redistribution under Scots pine and Downy oak forests in Mediterranean conditions. In EGU General Assembly Conference Abstracts (Vol. 15).

Haidu I., 1997. Time series analysis. Applications in Hydrology, HGA Press, Bucharest, Romania, 158 pag.

ISO 11274:1998 (E). Soil Quality – Determination of the water-retention characteristic – Laboratory methods. International Organization for Standardization. Geneva, Switzerland. 20 p.

Iticescu C., Georgescu L. P., Topa C., Murariu G. 2014. Monitoring the Danube Water Quality near the Galati City. Journal of Environmental Protection and Ecology 15(1): 30-38.

James S. E., Pärtel M., Wilson S. D., Peltzer D. A. 2003. Temporal heterogeneity of soil moisture in grassland and forest. Journal of Ecology 91(2): 234-239. DOI: 10.1046/j.1365-2745.2003.00758.x

Legates D. R., Mahmood R., Levia D. F., DeLiberty T. L., Quiring S. M., Houser C., Nelson F.E. 2011. Soil moisture: A central and unifying theme in physical geography. Progress in Physical Geography 35(1): 65-86. DOI: 10.1177/0309133310386514

Liancourt P., Sharkhuu A., Ariuntsetseg L., Boldgiv B., Helliker B.R., Plante A.F., Casper B.B. 2012. Temporal and spatial variation in how vegetation alters the soil moisture response to climate manipulation. Plant and Soil 351(1-2): 249-261. DOI: 10.1007/s11104-011-0956-y

Liu H., Zhao W. Z., He Z. B., Zhang L. J. 2008. Temporal heterogeneity of soil moisture under different vegetation types in Qilian Mountain. China. stxben 28(5): 2389-2394.

Lull H. W., Reinhart K. G. 1955. Soil-moisture measurement. Southern Forest Experiment Station, Forest Service, US Forest Service.

Manrique-Alba À., Ruiz-Yanetti S., Moutahir H., Novak K., De Luis M., Bellot J. 2017. Soil moisture and its role in growth-climate relationships across an aridity gradient in semiarid Pinus halepensis forests. Science of the Total Environment 574: 982-990. DOI: 10.1016/j.scitotenv.2016.09.123

May W., Meier A., Rummukainen M., Berg A., Chéruy F., Hagemann S. 2015. Contributions of soil moisture interactions to climate change in the tropics in the GLACE–CMIP5 experiment. Climate dynamics 45(11-12): 3275-3297. DOI: 10.1007/s00382-015-2538-9

Murariu G., Iticescu C., Georgescu L., Mocanu I., Topa C., Dobre M., 2015. Optimization of urban selective waste collection activity: Galati city case study. Environmental Engineering & Management Journal (EEMJ) 14(10). DOI: 10.30638/eemj.2015.264

Murariu G., Puscasu G., Gogoncea V. 2010. Non—Linear Flood Assessment with Neural Network. In: AIP Conference Proceedings (1203/1:. 812-819). AIP.

Puscasu G., Codres B., Stancu A., Murariu G. 2009. Nonlinear system identification based on internal recurrent neural networks. International Journal of Neural Systems 19(02): 115-125. DOI: 10.1142/S0129065709001884

Reichle R. H., Walker J. P., Randal D. K., 2002. Extended versus ensemble Kalman filtering for land data assimilation, Journal of Hydrometeorology 3: 728–740. DOI: 10.1175/1525-7541(2002)003<0728:EVEKFF>2.0.CO;2

Schwinning S., Davis K., Richardson L. Ehleringer J. 2002. Deuterium enriched irrigation indicates different forms of rain use in shrub/grass species of the Colorado Plateau. Oecologia 130: 345–355. DOI: 10.1007/s00442-001-0817-0

Seneviratne S.I., Corti T., Davin E.L., Hirschi M., Jaeger E.B., Lehner I., Orlowsky B., Teuling A.J. 2010. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci Rev 99:125–161. DOI: 10.1016/j.earscirev.2010.02.004

Shang K.Z., Wang S.G., Ma Y.X., Zhou Z.J., Wang J.Y., Liu H.L., Wang Y.Q., 2007. A scheme for calculating soil moisture content by using routine weather data. Atmospheric Chemistry and Physics 7: 5197–5206. DOI: 10.5194/acp-7-5197-2007

Shapiro S. S.; Wilk M.B., 1965. An analysis of variance test for normality (complete samples). Biometrika 52 (3–4): 591–611. DOI: 10.1093/biomet/52.3-4.591

Shuwen Z., Haorui L., Weidong Z., Chongjian Q., Xin L.I. 2005. Estimating the soil moisture profile by assimilating near-surface observations with the ensemble Kaiman filter (EnKF). Advances in Atmospheric Sciences 22(6): 936-945. DOI: 10.1007/BF02918692

Spârchez G., Dincă L., Marin G., Dincă M., Enescu R.E., 2017. Variation of eutric cambisols' chemical properties based on altitudinal and geomorphologic zoning. Environmental Engineering & Management Journal 16(12): 2911-2918. DOI: 10.30638/eemj.2017.300

Sun F., Lü Y., Wang J., Hu J., Fu B. 2015. Soil moisture dynamics of typical ecosystems in response to precipitation: A monitoring-based analysis of hydrological service in the Qilian Mountains. Catena 129: 63-75. DOI: 10.1016/j.catena.2015.03.001

Timofti M., Popa P., Murariu G., Georgescu L., Iticescu C., Barbu M., 2016. Complementary approach for numerical modelling of physicochemical parameters of the Prut river aquatic system. Journal of Environmental protection and Ecology 17(1): 53-63.

Trime Pico 32/64. Soil Moisture sensors with internal TDR electronics. Technical data. IMFO MicroModultehnika. GMBH

UNEP 2010. Busan Outcome.UNEP/IPBES/3/L.2/Rev.1. Documents/ipbes3/K1030396-IPBES-3-L.2Rev1.pdf. Accessed 25.07.2018.

Vaisala Automatic Weather Station AWS310. Technical Data.

Vereecken H., Kamai T., Harter T., Kasteel R., Hopmans J., Vanderborght J. 2007. Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophysical Research Letters 34(22). DOI: 10.1029/2007GL031813

Vivoni E.R., Moreno H. A., Mascaro G., Rodriguez J.C., Watts C.J., Garatuza-Payan J., Scott R.L. 2008. Observed relation between evapotranspiration and soil moisture in the North American monsoon region. Geophysical Research Letters 35(22). DOI: 10.1029/2008GL036001

Wang X.Y., Zhang W.J., Wang Z.Q., Liu X.P., Wang S.F. 2014. Soil moisture status under deep-rooted and shallow-rooted vegetation in the semiarid area of loess plateau in China. Pollution Journal Environmental Studies 23(2): 511-520.

Western A.W., Grayson R.B., Blöschl G., 2002. Scaling of soil moisture: A hydrologic perspective. Annual Review of Earth and Planetary Sciences 30(1): 149-180. DOI: 10.1146/

Zhang S.W., Qiu C. J., Xu Q. 2004. Estimating soil water contents from soil temperature measurements by using adaptive Kalman filter. Journal of Applied Meteorology 43: 379–389.

DOI: 10.1175/1520-0450(2004)043<0379:ESWCFS>2.0.CO;2

Zheng H., Gao J., Teng Y., Feng C., Tian M., 2015. Temporal variations in soil moisture for three typical vegetation types in inner mongolia, northern China. PloS one 10(3). DOI: 10.1371/journal.pone.0118964






Research article / INCDS85