Forest inventory sensitivity to UAS-based image processing algorithms


  • Bonifasius Maturbongs College of Forestry, Oregon State University, Corvallis OR USA
  • Michael G. Wing College of Forestry, Oregon State University, Corvallis OR USA
  • Bogdan Strimbu College of Forestry, Oregon State University, Corvallis OR USA
  • Jon Burnett US Forest Service, Pacific Northwest Station, Corvallis OR USA



Unmanned Aircraft Systems (UAS), photogrammetric point clouds, trees segmentation, structure from motion parameters, Douglas-fir


Frequent and accurate estimation of forest structure parameters, such as number of trees per hectare or total height, are mandatory for sustainable forest management. Unmanned aircraft system (UAS) equipped with inexpensive sensors can be used to monitor and measure forest structure. The detailed information provided by the UAS allows tree level forest inventory. However, tree identification depends on a variety of parameters defining the image processing and tree segmentation algorithms. The objective of our study was to identify parameter combinations that accurately delineated trees and their heights. We evaluated the impact of different tree segmentation and point cloud generation algorithms on forest inventory from imagery collected with a UAS over a mature Douglas-fir plantation forest. We processed the images with two commonly used commercial software packages, Agisoft PhotoScan and Pix4Dmapper, both implementing image processing algorithms called Structure from Motion. For each software we generated photogrammetric point clouds by varying the parameters defining the implementation. We segmented individual trees and heights using three tree algorithms: Variable Window Filter, Graph-Theoretical, and Watershed Segmentation. We assessed the impact of image processing algorithms on forest inventory by comparing the estimated trees with trees manually identified from the point clouds. We found that the type of tree segmentation and image processing algorithms have a significant effect in accurately identifying trees. For tree height estimation, we found strong evidence that image processing algorithms had significant effects, whereas tree segmentation algorithms did not significantly affect tree height estimation.These findings may be of interest to others that are using high-resolution spatial imagery to estimate forest inventory parameters.


Abdollahnejad A., Panagiotidis D., SurovýP., 2018. Estimation and extrapolation of tree parameters using spectral correlation between UAV and Pléiades data. Forests9(2): 85. DOI: 10.3390/f9020085

Agisoft, 2018. Agisoft PhotoScan User Manual - Professional Edition, Version 1.3. Web: Accessed: 03.06.18

Carr J.C., Slyder J.B., 2018. Individual tree segmentation from a leaf-off photogrammetric point cloud. International Journal of Remote Sensing 39: 1–16. DOI: 10.1080/01431161.2018.1434330

Cook K.L., 2017. An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology 278: 195–208. DOI: 10.1016/j.geomorph.2016.11.009

Dandois J., Olano M., Ellis E., 2015. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sensing 7(10): 13895–13920. DOI: 10.3390/rs71013895

Edson C., Wing M.G., 2011. Airborne light detection and ranging (LiDAR) for individual tree stem location, height, and biomass measurements. Remote Sensing 3(12): 2494–2528. DOI: 10.3390/rs3112494

Fang R., Strimbu B.M., 2017. Stem measurements and taper modeling using hotogrammetric point clouds. Remote Sensing 9(7):716. DOI: 10.3390/rs9070716

Fernández-Guisuraga J., Sanz-Ablanedo E., Suárez-Seoane S., Calvo L., 2018. Using unmanned aerial vehicles in postfire vegetation survey campaigns through large and heterogeneous areas: Opportunities and challenges. sensors 18(2): 586. DOI: 10.3390/s18020586

Goerndt M.E., Monleon V.J., Temesgen H., 2010. Relating forest attributes with area - and tree-based light detection and ranging metrics for Western Oregon. Western Journal of Applied Forestry 25(3): 105–111. DOI: 10.1093/wjaf/25.3.105

ICAO, 2011. Unmanned aircraft systems: (UAS). Web: Accessed: 13.02.17

Kaartinen H., Hyyppä J., Yu X., Vastaranta M., Hyyppä H., Kukko A., Holopainen M., HeipkeC., Hirschmugl M., Morsdorf F., Næsset E., Pitkänen J., Popescu S., Solberg S., Wolf B.M., Wu J., 2012. An International comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing 4(4): 950–974. DOI: 10.3390/rs4040950

Kachamba D., Ørka H., Gobakken T., Eid T., Mwase W., 2016. Biomass estimation using 3D data from Unmanned Aerial Vehicle imagery in a tropical woodland. Remote Sensing 8(11): 968. DOI: 10.3390/rs8110968

Méndez-Barroso L.A., Zárate-Valdez J.L., Robles-Morúa A., 2018. Estimation of hydromorphological attributes of a small forested catchment by applying the Structure from Motion (SfM) approach. International Journal of Applied Earth Observation and Geoinformation 69: 186–197. DOI: 10.1016/j.jag.2018.02.015

Messinger M., Asner G., Silman M., 2016. Rapid assessments of Amazon forest structure and biomass using small Unmanned Aerial Systems. Remote Sensing 8(8): 615. DOI: 10.3390/rs8080615

Mlambo R., Woodhouse I., Gerard F., Anderson K., 2017. Structure from Motion (SfM) Photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests 8(3): 68. DOI: 10.3390/f8030068

Ota T., Ogawa M., Mizoue N., Fukumoto K., Yoshida S., 2017. Forest structure estimation from a UAV-Based photogrammetric point cloud in managed temperate coniferous forests. Forests 8(9): 343. DOI: 10.3390/f8090343

Ota T., Ogawa M., Shimizu K., Kajisa T., Mizoue N., Yoshida S., Takao G., Hirata Y., Furuya N., Sano T., Sokh H., Ma V., Ito E., Toriyama J., Monda Y., Saito H., Kiyono Y., Chann S., Ket N., 2015. Aboveground biomass estimation using structure from motion aproach with aerial photographs in a seasonal tropical forest. Forests 6(11): 3882–3898. DOI: 10.3390/f6113882

Panagiotidis D., Abdollahnejad A., Surový P., Chiteculo V., 2017. Determining tree height and crown diameter from high-resolution UAV imagery. International Journal of Remote Sensing 38(8–10): 2392–2410. DOI: 10.1080/01431161.2016.1264028

Paneque-Gálvez J., McCall M., Napoletano B., Wich S., Koh L., 2014. Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests 5(6): 1481–1507. DOI: 10.3390/f5061481

Perroy R.L., Sullivan T., Stephenson N., 2017. Assessing the impacts of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system. ISPRS Journal of Photogrammetry and Remote Sensing 125: 174–183. DOI: 10.1016/j.isprsjprs.2017.01.018

Pix4Dmapper, 2018. Pix4Dmapper 4.1 User Manual. Web: Accesses: 04.06.18

Plowright A., 2018. Canopy analysis in R using Forest Tools. Web: Accessed: 24.07.18

Popescu S.C., Wynne R.H., 2004. Seeing the trees in the forest: Using Lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering and Remote Sensing 70: 589-604. DOI: 10.14358/PERS.70.5.589

QTM, 2018. Tutorials – Applied Imagery. Web: Accessed: 23.07.18

Roşca S., Suomalainen J., Bartholomeus H., Herold M., 2018. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests. Interface Focus 8(2): 20170038. DOI: 10.1098/rsfs.2017.0038

Sankey T., Donager J., McVay J., Sankey J.B., 2017. UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA. Remote Sensing of Environment 195: 30–43. DOI: 10.1016/j.rse.2017.04.007

SAS, 2018. Base SAS 9.4 Procedures Guide: Statistical Procedures, Second Edition. Web: Accessed: 23.07.18

Singh P.S., Sharma M., Saikhom V., Chutia D., Gupta C., Chouhan A., Raju P.L.N., 2018. Towards generation of effective 3D surface models from UAV imagery using open source tools. Current Science 114(2): 9. DOI: 10.18520/cs/v114/i02/314-321

Snavely N., Seitz S.M., Szeliski R., 2008. Modeling the world from internet photo collections. International Journal of Computer Vision 80(2): 189–210. DOI: 10.1007/s11263-007-0107-3

Strîmbu V.F., Strîmbu B.M., 2015. A graph-based segmentation algorithm for tree crown extraction using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing 104: 30–43. DOI: 10.1016/j.isprsjprs.2015.01.018

Torresan C., Berton A., Carotenuto F., Di Gennaro S.F., Gioli B., Matese A., Miglietta F., Vagnoli C., Zaldei A., Wallace L., 2017. Forestry applications of UAVs in Europe: a review. International Journal of Remote Sensing 38(8–10): 2427–2447. DOI: 10.1080/01431161.2016.1252477

WallaceL., Lucieer A., Malenovský Z., TurnerD., Vopěnka P., 2016. Assessment of forest structure using two UAV Techniques: A comparison of airborne laser scanning and structure from motion (SfM) Point Clouds. Forests 7(3): 62. DOI: 10.3390/f7030062

Zahawi R.A., Dandois J.P., Holl K.D., Nadwodny D., Reid J.L., Ellis, E.C., 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation 186: 287–295. DOI: 10.1016/j.biocon.2015.03.031

Zhang J., Hu J., Lian J., Fan Z., Ouyang X., Ye W., 2016. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation 198: 60–69. DOI: 10.1016/j.biocon.2016.03.027






Research article