Forest delineation based on LiDAR data and vertical accuracy of the terrain model in forest and non-forest area


  • Ivan Sačkov National Forest Centre, Forest Research Institute Zvolen, Department of Forest Inventory and Management, T. G. Masaryka 22, Zvolen, 960 92, Slovakia
  • Miroslav Kardoš Technical University in Zvolen, Faculty of Forestry, Department of Forest Management and Geodesy, T. G. Masaryka 24, Zvolen, 960 53, Slovakia



Airborne Laser Scanning, forest delineation, vertical accuracy, Digital Terrain Model


This paper deals with the use of airborne laser scanning data (ALS) in the process of the automatic delineation of forest and the generation of digital terrain models (DTM) in forested and nonforested land. The area of interest where the procedures presented in this study were examined is part of the University Forest Enterprise (UFE), Technical University in Zvolen. Within the forest delineation is presented a solution that iteratively takes into account the criterion of minimum area, height, width and crown coverage (CC). At the same time this approach also evaluates the mutual distance of identified crowns and the presence of buildings. Compared with manually identified forest boundaries, the accuracy of the automated procedure in the model area reached the value of 93%. In the DTM generation, various alternative methods of interpolation and conversion were used, while ALS data from the  summer and winter aspects were also available. The results showed that laser scanning in the area of interest provided systematically overestimated data for the DTM generation. The largest deviations of the DTM were found in terrains with a significant slope, regardless of the complexity of the afforestation structure (except for the youngest forest). In older stands and unforested areas with a moderate slope, the DTM accuracy achieved was in the range ±6-17 cm.


Akkay A.E., Sessions J., 2005. Applying the decision support system, TRACER, to forest road design. Western Journal of Applied Forestry 20(3): 184–191. Akkay A.E., Oğuz H., Karas I.R., Aruga K., 2008. Using LiDAR technology in forestry activities. Environmental Monitoring and Assessement 151(1-4): 117–125. DOI: 10.1007/s10661-008-0254-1. Altman D.G., 1998. Some common problems in medical research: Practical stastistics for medical research. 8th ed. Chapman & Hall,London, 589 p. Burrough P.A., 1986. Principles of GIS for land resources assessment.OxfordUniversityPress,Oxford, 193 p. Chen Q., Gong P., Baldocchi D., Xie G., 2007. Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering & Remote Sensing 73(2): 175-185. DOI: 10.14358/ PERS.73.2.175. Cibulka M., Mikita T., 2011. Využití leteckého laserového skenování pro digitální modelování terénu v lesních porostech. [CD-ROM]. Progresívne postupy spracovania náhodných ťažieb [Utilization of airborne laser scanning for digital terrain modelling in forest stands. Progressive methods for processing of incidental fellings]. ISBN 978-80-228-2286-2. s. 100-108. Divín J., 2011. Porovnání přesnosti dat leteckého laserového skenování pro tvorbu digitálních modelů terénu [Comparison of accuracy of lidar data for DTM generation]. Bachelor thesis, Faculty of Forestry and Wood Technology,MendelUniversity,Brno, 48 p. Evans J., Hudak A., 2007. Amultiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Trans. Geoscience and Remote Sensing 45(4): 1029–1038. DOI: 10.1109/TGRS.2006.890412. Eysn L., Hollaus M., Vetter M., Mucke W., Pfeifer N., Regner B., 2010. Adapting α-shapes for forest delineation using ALS Data. In Koch B., Kändler G., Teguem Ch. (eds.), 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems (Silvilaser 2010), 14–17 September 2010, Germany, Albert-Ludwigs- University, Freiburg, pp. 41-50. Eysn L., Hollaus M., Schadauer K., Roncat A., 2011. Crown coverage calculation based on ALS data. In Hirata, Y., et al. (ed.), Proceedings of 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems (Silvilaser 2011), 16–20 October 2011, Australia, Hobart, pp. 10. Eysn L., Hollaus M., Schadauer K., Pfeifer N., 2012. Forestdelineation based on airborne LIDAR data. Remote Sensing 4(3): 762-783. DOI: 10.3390/rs4030762. FAO, 1993. Guidelines for land-use planning. Web: 1993. FAO, 2007. Guidelines for defining forest resources. Web: Accessed 2007. Gomes Pereira L., Goncalves G., 2010. Accuracy of a DTM derived from full-waveform laser scanning data under unstructured eucalypt forest: A case study. In: Staiger R., et al. (eds.), XXIV FIG International Congress 2010, April 2010,Australia,Sydney, pp. 1-16. HodgsonM.E., Jensen J.R., Schmidt L., Schill S., DavisB., 2003. An evaluation of LIDAR- and IFSAR-derived digital elevation models in leaf-on conditions with USGS Level 1 and Level 2 DEMs. Remote Sensing of Environment 84 (2003): 295–308. DOI: 10.1016/S0034-4257(02)00114-1. HodgsonM.E., Jensen J., Raber G., Tullis J., DavisB.A., Thompson G., Schuckman K., 2005. An evaluation of lidar-derived elevation and terrain slope in leaf-off conditions. Photogrammetric Engineering & Remote Sensing 71(7): 817–823. DOI: 10.14358/PERS.71.7.817. Hollaus M., Wagner W., Schadauer K., Maier B., Gabler K., 2009. Growing stock estimation for alpine forests in Austria: a robust lidar-based approach. Canadian Journal of ForestResearch 39(7): 1387-1400. DOI: 10.1139/X09-042. Hollaus M., Mandlburger G., Pfeifer N., Mücke W., 2010. Land cover dependent derivation of digital surface models from airborne laser scanning data. In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (eds.), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, September 1-3, France, pp. 221-226. Hollaus M., Eysn L., Bauerhansl Ch., Riccabona F., Maier B., Jochem A., Petrini-Monteferri F., 2012. Accuracy assessment of ALS-derived stem volume and biomass maps. EARSel eProceedings 11(1): 74-86. Hyyppä H., Xiaowei Y., Hyyppä J., Kaartinen H., Kaasalainen S., Honkavaara E., Rönnholm P., 2005. Factors affecting the quality of DTM generation in forested areas. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36 (Part 3/W19), pp. 97–102. Hyyppä J.,PyysaloU., Hyyppä H., Samberg A., 2000. Elevation accuracy of laser scanning-derived digital terrain and target models in forest environment. In: Reuter R., Babichenko S., Samberg A. (eds.), 4th Workshop on lidar remote sensing of land and sea, Germany, EARSeL, Dresden, pp. 139-147. Jaara K., Lecordix F., 2011. Extraction of cartographic contour lines using digital terrain model (DTM). Cartographic Journal 48(2): 131-137. DOI: 10.1179/1743277411Y.0000000011. Kraus K., Pfeifer N., 1998. Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 53(4): 193–203. DOI: 10.1016 /S0924-2716(98)00009-4. Landis J., Koch G., 1977. The measurement of observer agreement for categorical data. Biometrics 33(1): 159–174. DOI: 10.2307/2529310. Leckie D.G., Gougeon F.A., Walsworth N., Paradine D., 2003. Stand delineation and composition estimation using semi-automated individual tree crown analysis. Remote Sensing of Environment 85(3): 355–369. DOI: 10.1016/S0034-4257(03)00013-0. Leppänen V., Tokola T., Maltamo M., Mehtätalo L., Pusa T., Mustonen J., 2008. Automatic delineation of forest stands from LIDAR data. In: Hay J.G., Blaschke T., Marceau D. (eds.), GEOBIA 2008 – Pixels, Objects, Intelligence, GEOgraphic Object Based Image Analysis for the 21st Century, August 05-08, Canada, University of Calgary, Calgary Alberta, pp. 373. ISPRS Vol. XXXVIII-4/C1. LundH.G., 2012. National definitions of forest/forestland listed by country. Web: Accessed 10 June 2013 Moravčík M., Čaboun V., Priwitzer T., 2010. National forest inventories – pathways for common reporting. In: Tomppo E., Gschwantner T., Lawrence M., McRoberts R. (eds.)SlovakRepublic. Springer Science Business Medias B. V. pp. 609. ISBN 978-90-481-3232-4. doi: 10.1007/978/90/481-3233-1. Radoux J., Defourny P.A., 2007. Quantitative assessment of boundaries in automated forest stand delineation using very high resolution imagery. Remote Sens. Environ 110(4): 468-475. DOI: 10.1016/j.rse.2007.02.031. Reutebuch S.E., McGaughey R.J., Andersen H.E., CarsonW.W., 2003. Accuracy of a high-resolution LIDAR terrain model under a conifer forest canopy. Canadian Journal of Remote Sensing 29(5): 527–535. DOI: 10.5589/m03-022. Schoene D., Killmann W., Lüpke H., Wilkie M.L., 2007. Forests and climate change working paper 5, Definitional issues related to reducing emissions from deforestation in developing countries. FAO, Rome, 29 p. Skaloud J., Schaer P., 2012. Automated assessment of digital terrain models derived from airborne laser scanning. Photogrammetrie Fernerkundung Geoinformation 2012(2): 105-114. Straub C., Weinacker H., Koch B.,2008. Afully automated procedure for delineation and classification of forest and non-forest vegetation based on full waveform laser ccanner data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information sciences, Jul 3-11,China, ISPRS,Beijing, pp. 1013-1019. Šmelko Š., Šebeň V., Bošeľa M., Merganič J., Jankovič J., 2008. Národná inventarizácia a monitoring lesov SR 2005-2006: Základná koncepcia a výber zo súhrnných informácií [National inventory and forest monitoring SR 2005-2006: The basic concept and the selection of summary information]. National Forest Centre, Zvolen, 15 p. Susaki J., 2012. Adaptive slope filtering of airborne LiDAR data in urban areas for Digital Terrain Model (DTM) generation. Remote Sensing 4(6): 1804-1819. doi: 10.3390/rs4061804. DOI: 10.3390 /rs4061804. Su J.G., Bork E.W., 2006. Influence of vegetation, slope and LIDAR sampling angle on DEM accuracy. Photogrammetric Engineering and Remote Sensing 72: 1265–1274. DOI: 10.14358/PERS.72.11.1265. Tuček J., 1988. Geografické informační systémy: Principy a praxe [Geographic information systems: Principles and practice]. Computer Press,Ostrava, 424 p. Wang Z., Boesch R., Ginzler C., 2011. Forestdelineation of aerial images with Gabor wavelets. International Journal of Remote Sensing 33(7): 2196-2213. DOI: 10.1080/01431161.2011.608087.






Research article