Molecular differentiation of Turkish and Common hazels (Corylus colurna L. and Corylus avellana L.) using multiplexed nuclear microsatellite markers


  • Barbara Fussi Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, 83317 Teisendorf, Germany
  • Darius Kavaliauskas Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, 83317 Teisendorf, Germany
  • Muhidin Seho Bavarian Office for Forest Genetics (AWG), Forstamtsplatz 1, 83317 Teisendorf, Germany



SSR, multiplex PCR, polymorphism, species differentiation, molecular markers, hazelnut


Corylus colurna is considered as important tree species under climate change for dry and warm conditions in Central Europe and was overused because of its valuable wood. Therefore Turkish hazel is now present only in small isolated populations and is protected under IUCN. Genetic conservation of this tree species plays a key role in future sustainable forest development. Turkish hazel co-occurs with Common hazel (C. avellana) in its whole distribution area and may form hybrids. To differentiate between the pure species and their hybrids, cross-species amplifying markers are required. In this study we have evaluated existing simple sequence repeat (SSR) markers using altogether 128 samples of C. avellana and C. colurna. Fifteen nuclear SSRs have generated easy to-score alleles in the two species and 13 of them were highly polymorphic. For  all 15 markers the mean allele number, average observed heterozygosity, genetic diversity and polymorphism information index were high. The two most polymorphic SSRs were L1.10 and CaT-B501 with 19 and 16 alleles, respectively. Structure analysis proved the differentiation of the two species C. avellana and C. colurna. No hybridization was detected in the analysed populations. Results also indicated that C. colurna from Balkan Peninsula and Asia Minor belong to separate groups. Our study presents highly polymorphic, easy to score, ready to use SSR-multiplexes, which can be applied in population genetics and gene conservation studies.


Acuña CV., Fernandez P., Villalba PV., García MN., Hopp HE., Marcucci Poltri SN., 2012. Discovery, validation, and in silico functional characterization of EST-SSR markers in Eucalyptus globulus. Tree Genetics & Genomes 8: 289–301Alexandrov A H., 1995. Corylus colurna. In: Enzyklopädie der Holzgewächse. Handbuch und Atlas der Holzgewächse. 2. Erg.Lfg. Landsberg am Lech : ecomed-Verlag. Band III-2Alteheld R., 1996. Die Turkish hazel: Monographie einer Baumart. In: Baumkunde. Band 1. Eching: IHW-Verlag, 39–75Barbara T., Palma-Silva C., Paggi GM., Bered F., Fay MF., Lexer C., 2007. Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16: 3759–3767Bassil NV., Botta R., Mehlenbacher SA., 2005. Microsatellite markers in hazelnut: isolation, characterization and crossspecies amplification. J Am Soc Hort Sci 130:543–549Bassil N., Boccacci P., Botta R., Postmann J., Mehlenbacher S., 2013. Nuclear and chloroplast microsatellite markers to assess genetic diversity and evolution in hazelnut species, hybrids and cultivars. Genet Resour Crop Evol (2013) 60: 543. doi: 10.1007/s10722-012-9857-zBoccacci P., Akkak A., Bassil N V., Mehlenbacher S A., Botta R., 2005. Characterization and evaluation of microsatellite loci in European hazelnut (Corylus avellanaL.) and their transferability to other Corylus species. Molecular Ecology Notes 5: 934–937Botstein D., White R L., Skolnick M H., Davies R W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331Brookfield JFY., 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5: 453–455.Cipriani G., Lot G., Huang WG., Marrazzo MT., Peterlunger E., Testolin R., 1999. AC/GT and AG/CT microsatellite repeats in peach [Prunus persica (L) Batsch]: isolation, characterisation and cross-species amplification in Prunus. Theor Appl Genet 99: 65. JJ., Doyle LJ., 1990. Isolation of plant DNA from fresh tissue, Focus 12: 13-15 Earl DA., vonHoldt BM., 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4 (2): 359-361. doi: 10.1007/s12686-011-9548-7Ellis JR., Burke JM., 2007. EST-SSRs as a resource for population genetic analyses. Heredity 99: 125–132.Erdogan V., Mehlenbacher SA., 2000. Interspecific hybridization in hazelnut. J Am Soc Hort Sci 125 (4): 489–497Erdogan V., Mehlenbacher SA., 2000a. Phylogenetic relationships of Corylus species (Betulaceae) based on nuclear ribosomal DNA ITS region and chloroplast matK gene sequences. Systematic Botany 25 (4): 727-737Evanno G., Regnaut S., Goudet J ., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology 14 (8): 2611-2620.Fitschen J., 1994. Gehölzflora Ein Buch zum Bestimmen der in Mitteleuropa wildwachsenden und angepflanzten Bäume und Sträucher. 10. Aufl. Heidelberg, Wiesbaden : Quelle & Meyer Verlag.Gellatly JU., 1966. Tree hazels and their improved hybrids. Annu. Rpt. N. Nut Growers Assn. 57: 98–101Gürcan K., Mehlenbacher SA., 2010a. Transferability of Microsatellite Markers in the Betulaceae. J. Amer. Soc. Hort. Sci. 135 (2): 159–173.Gürcan K., Mehlenbacher SA., 2010b. Development of microsatellite marker loci for European hazelnut (Corylus avellana L.) from ISSR fragments. Mol Breeding 26 (3): 551-559. doi 10.1007/s11032-010-9464-7Gürcan K., Mehlenbacher SA., Botta R., Boccacci P. 2010. Development, characterization, segregation, and mapping of microsatellite markers for european hazelnut (Corylus avellana L.) from enriched genomic libraries and usefulness in genetic diversity studies. Tree Genetics and Genomes 6 (4): 513–531Huntley B., 1990. European vegetation history: paleovegetation maps from pollen data—13000 yr BP to present. J Quaternary Sci 5(2):103–122Huntley B., Birks HJB., 1983. An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, CambridgeJahn E., 1930. Bemerkenswerte Gehölze im Botanischen Garten der Forstlichen Hochschule in Hann. Münden. Mitt. Dt. Dendrol. Ges. 42: 42-45Kalinowski ST., Taper ML., Marshall TC., 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16: 1099-1106Kasapligil B., 1963. Corylus colurna and its varieties. Calif. Hort. Soc. J. 24: 95–104 Kasapligil B., 1964. A contribution to the histotaxonomy of Corylus (Betulaceae). Adansonia 4(1): 43–90Kulju KKM., Pekkinen M., Varvio S., 2004. Twenty-three microsatellite primer pairs for Betula pendula (Betulaceae). Molecular Ecology Notes 4: 471–473Leinemann L., Steiner W., Hosius B., Kuchma O., Arenhövel W., Fussi B., Haase B., Kätzel R., Rogge M., Finkeldey R., 2013. Genetic variation of chloroplast and nuclear markers in natural populations of hazelnut (Corylus avellana L.) in Germany. Plant Syst Evol 299: 369–378Mitchell A., 1979. Die Wald- und Parkbäume Europas. Ein Bestimmungsbuch. 2. Aufl. Berlin, Hamburg: Paul PareyOliveira EJ., Pádua JG., Zucchi MI., Vencovsky R., Vieira MLC., 2006. Origin, evolution and genome distribution of microsatellites. Genetics and Molecular Biology 29 (2): 294-307Palmé A., Vendramin GG., 2002. Chloroplast DNA variation, postglacial recolonisation and hybridisation in hazel, Corylus avellana. Mol Ecol 9: 1769–1780Peakall R., Smouse PE., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537-2539Pierantoni L., Cho KH., Shin IS., Chiodini R., Tartarini S., Dondini L., Kang SJ., Sansavini S., 2004. Characterisation and transferability of apple SSRs to two European pear F1 populations. Theor Appl Genet (2004) 109: 1519. JK., Stephens M., Donelly PJ., 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959 Richter E.,2013. Baumhasel – anbauwürdig in Mitteleuropa? AFZ-DerWald 5: 7-9Schmidt PA., 2003. Bäume und Sträucher Baumhasel Kaukasiens Teil II: Laubgehölze der Familien Aceraceae (Ahorngewächse) bis Cornaceae (Hartriegelgewächse). In: Mitteilungen der Deutschen Dendrologischen Gesellschaft. Nr. 88, 77-100Šeho M., Huber G., Fussi B., 2017. Suitability for cultivation of provenances of Cedar and Turkish Hazel in Germany as a result of climate change. IUFRO 125th Anniversary Congress, 18 – 22 September 2017, Freiburg, Germany. Book of abstracts pp 360Šeho M., Huber G., Kahveci G., Ayan S., 2018a. Turkish hazel: Second chance for an overused tree species. Submitted to Forest IdeasŠeho M., Huber G., 2018b. Baumhasel – Bewertung möglicher Saatguterntebestände. AFZ-DerWald 4: 31-35Šeho, M., Ayan, S., Huber, G. & Kahveci, G. (2019). A Review on Turkish Hazel (Corylus colurna L.): A Promising Tree Species for Future Assisted Migration Attempts. South-east European forestry, 10 (1), 53-63. H., Fluch S., Turetschek E., Lexer C., Streiff R., Kremer A., Burg K., Glössl J., 1997. Identification and characterization of (GA/CT) n-microsatellite loci from Quercus petraea. Plant molecular biology 33 (6): 1093-1096Temel F., Arslan M., Çakar D., 2017. Status of natural Turkish hazel (Corylus colurna L.) populations in Turkey. Journal of Forestry Faculty 18 (1): 1‐9Truong C., Palmé A E., Felber F., Naciri-Graven Y., 2004. Isolation and characterization of microsatellite markers in the tetraploid birch, Betula pubescens ssp. Tortuosa. Molecular Ecology Notes 5 (1): 96-98Van Oosterhout C., Hutchinson WF., Wills DPM., Shipley P., 2004. Micro‐checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538. ML., Barkley NA., Jenkins TM., 2009. Microsatellite Markers in Plants and Insects. Part I: Applications of Biotechnology. Genes, genomes and genomics 3 (1): 54-67






Research article