Research article

Developing a new model for predicting the diameter distribution of oak forests using an artificial neural network

Shisheng Long, Siqi Zeng, Guangxing Wang

Shisheng Long
Central South University of Forestry and Technology
Siqi Zeng
Faculty of Forestry, Central South University of Forestry and Technology, Changsha, Hunan
Guangxing Wang
Southern Illinois University, Carbondale. Email: gxwang@siu.edu

Online First: December 25, 2021
Long, S., Zeng, S., Wang, G. 2021. Developing a new model for predicting the diameter distribution of oak forests using an artificial neural network. Annals of Forest Research DOI:10.15287/afr.2020.2060


The parameters of the probability density function (PDF) may be estimated using the parameter prediction method (PPM) and the parameter recovery method (PRM). However, these methods can suffer from accuracy issues. We developed and evaluated the prediction accuracy of two PPMs (stepwise regression model and dummy variable model) and an artificial neural network (ANN) to predict diameter distribution using data collected from 188 oak forest plots. The results demonstrated that the Weibull distribution performed well in fitting the diameter distribution. Compared with the stepwise regression model, the PPM model with stand type as a dummy variable reduced the predictional errors in estimating the parameters b and c of the Weibull distribution, but the prediction accuracy of the diameter distribution showed no significant improvement. Compared with the two PPM models, the ANN model with diameter class (C), average diameter (D) and stand type (T) as input variables decreased the RRMSE by 2.9% and 4.33% in estimating diameter distribution, respectively. The satisfactory prediction accuracy and simple model structure indicated that an ANN worked well for the prediction of the diameter distribution with few requirements and high practicality.

Abbasi B., Rabelo L., Hosseinkouchack M., 2008. Estimating parameters of the three-parameter Weibull distribution using a neural network. European Journal of Industrial Engineering 2(4): 428-445. https://doi.org/10.1504/ejie.2008.018438

Álvarez-González J.G., Schröder J., Rodrı́guez Soalleiro R., Ruı́z González A.D., 2002. Modelling the effect of thinnings on the diameter distribution of even-aged Maritime pine stands. Forest Ecology and Management 165(1-3): 57-65. https://doi.org/10.1016/S0378-1127(01)00650-8

Ashraf M.I., Zhao Z.Y., Bourque C.P.A., MacLean D.A., Meng F.R., 2013. Integrating biophysical controls in forest growth and yield predictions with artificial intelligence technology. Canadian Journal of Forest Research 43(12):1162-1171. https://doi.org/10.1139/cjfr-2013-0090

Bailey R.L., Dell T.R., 1973. Quantifying diameter distributions with the Weibull function. Forest Science 19(2): 97-104. https://doi.org/10.1093/forestscience/19.2.97

Binoti D.H.B., Leite H.G., Nogueira G.S., Silva M.L.M., Garcia S.L.R., Cruz J.P., 2010. Three-parameter Weibull distribution in a diametric distribution model for thinning Eucaliptus stands. Revista Árvore 34(1):147-156. https://doi.org/10.1590/S0100-67622010000100016

Borders B.E., Patterson W.D., 1990. Projecting stand tables: a comparison of the Weibull diameter distribution method, a percentile-based projection method and a basal area growth projection method. Forest Science 36(2): 413-424. https://doi.org/10.1093/forestscience/36.2.413

Bowling E.H., Burkhart H.E., Burk T.E., Beck D.E., 1989. A stand-level multispecies growth model for Appalachian hardwoods. Canadian Journal of Forest Research 19(4): 405-412. https://doi.org/10.1139/x89-064

Brooks J.R., Borders B.E., Bailey R.L., 1992. Predicting diameter distributions for site-prepared loblolly and slash pine plantations. Southern Journal of Applied Forestry 16(3):130-133. https://doi.org/10.1093/sjaf/16.3.130

Cai S., Kang X., Zhang L.X., Gong Z., Qin L., Chen P., 2010. A model for tree diameter distribution in stands based on artificial neural network. International symposium on intelligence processing and trusted computing (IPCT). IEEE Computer Society 332e336. https://doi.org/10.1109/iptc.2010.44

Cao Q.V., 2004. Predicting parameters of a Weibull function for modeling diameter distribution. Forest Science 50(5): 682-685. https://doi.org/10.1093/forestscience/50.5.682

Carretero A.C., Torres Alvarez E., 2013. Modelling diameter distributions of Quercus suber L. stands in "Los Alcornocales" Natural Park (Cadiz-Malaga, Spain) by using the two parameter Weibull functions. Forest Systems 22(1): 15-24. https://doi.org/10.5424/fs/2013221-02142

Chen D.S., Huang X.Z., Zhang S.G., Sun X.M., 2017. Biomass modeling of Larch (Larix spp.) Plantations in China based on the mixed model, dummy variable model, and bayesian hierarchical model. Forests 8(8): 268. https://doi.org/10.3390/f8080268

Clutter J.L., Bennett F.A., 1965. Diameter distributions in old-field slash pine plantations (Report 13). Macon: Report of Georgia Forest Research Council.

Clutter J.L., Harms W.R., Brister G.H., et al., 1984. Stand structure and yields of site-prepared loblolly pine plantations in the lower coastal plain of the Carolinas, Georgia, and north Florida. USDA Forest Service, Southeastern Forest Experiment Station, Asheville, General Technical Report SE-27.

Coomes D A., Allen R.B., 2007. Mortality and tree-size distributions in natural mixed-age forests. Journal of Ecology 95(1): 27-40. https://doi.org/10.1111/j.1365-2745.2006.01179.x

Corne S.A., Carver S.J., Kunin W.E., Lennon J.J., Van Hees W.W.S., 2004. Predicting forest attributes in southeast Alaska using artificial neural networks. Forest Science 50(2): 259-276. https://doi.org/10.1093/forestscience/50.2.259

Dande P., Samant P., 2018. Acquaintance to artificial neural networks and use of artificial intelligence as a diagnostic tool for tuberculosis: a review. Tuberculosis 108: 1-9. https://doi.org/10.1016/j.tube.2017.09.006

Diamantopoulou M.J., 2005. Artificial neural networks as an alternative tool in pine bark volume estimation. Computers and Electronics in Agriculture 48(3): 235-244. https://doi.org/10.1016/j.compag.2005.04.002

Dorsett D., Webster J.T., 1983. Guidelines for variable selection problems when dummy variables are used. The American Statistician 37(4a): 337-339. https://doi.org/10.1080/00031305.1983.10483138

García O., 1981. Simplified method of moments estimation for the Weibull distribution. New Zealand Journal of Forestry Science 11(3): 304-306.

Goelz J.C.G., Leduc D.J., 2002. A model describing growth and development of longleaf pine plantations: consequences of observed stand structures of structure of the model. Gen. Tech. Rep. SRS–48. Asheville, NC: US Department of Agriculture, Forest Service, Southern Research Station. pp. 438-442.

Gurney K., 1997. An introduction to neural networks. London: UCL Press. 234 p.

Hafley W.L., Schreuder H.T., 1977. Statistical distributions for fitting diameter and height data in even-aged stands. Canadian Journal of Forest Research 7(3): 481-487. https://doi.org/10.1139/x77-062

Hou Y.S., Chen X.L., Sun G.J., 2017. Oaks management. China Forestry Press: Beijing, China. 9 p

Huang J.R., 2000. Studies on the suitability of Weibull distribution in Masson pine plantations. Guizhou Forestry Science and Technology 1: 7-13.

Hyink D.M., Moser J.W., 1983. A generalized framework for projecting forest yield and stand structure using diameter distributions. Forest Science 29: 85-95. https://doi.org/10.1093/forestscience/29.1.85

Jiang L.C., Brooks J.R., 2009. Predicting diameter distributions for young longleaf pine plantations in Southwest Georgia. Southern Journal of Applied Forestry 33(1): 25-28. https://doi.org/10.1093/sjaf/33.1.25

Johnson N.L., 1949. Systems of frequency curves generated by methods of translation. Biometrica 36(1-2): 149-176. https://doi.org/10.2307/2332539

Johnston M.H., Williamson T.B., Munson A.D., Ogden A.E., Moroni M.T., Parsons R, Price D.T., Stadt J.T., 2010. Climate change and forest management in Canada: impacts, adaptive capacity and adaptation options. A State of Knowledge report. Sustainable Forest Management Network, Edmonton. 54 p.

Kayes I, Deb J.C., Comeau P., Das S., 2012. Comparing normal, lognormal and Weibull distributions for fitting diameter data from Akashmoni plantations in the north-eastern region of Bangladesh. Southern Forests 74(3): 175-181. https://doi.org/10.2989/20702620.2012.717409

Kilkki P., Maltamo M., Mykkanen R., et al., 1989. Use of the Weibull function in estimating the basal area DBH-distribution. Silva Fennica 23(4): 311-318. https://doi.org/10.14214/sf.a15550

Leak W.B., 1964. An expression of diameter distribution for unbalanced, uneven-aged stands and forests. Forest Science 10(1): 39-50. https://doi.org/10.1093/forestscience/10.1.39

Lee F.Y., 1974. On the dummy variable technique and covariance analysis in testing equality among sets of coefficients in linear regressions: An expository note. The Journal of Financial and Quantitative Analysis 9(3): 491-495. https://doi.org/10.2307/2329876

Lee Y.J., Coble D.W., 2006. A new diameter distribution model for unmanaged loblolly pine plantations in East Texas. Southern Journal of Applied Forestry 30(1): 13-20. https://doi.org/10.1007/s10035-008-0092-4

Li W.Y., Wang B., Li G.C., 2001. Ecological benefits and economic values of Oaks species and countermeasures for their resource protection. For. Sci. Techol 8: 13-15. https://doi.org/10.13456/j.cnki.lykt.2001.08.004

Lima R.A.F. de, Batista J.L.F., Prado P.I., 2015. Modeling Tree Diameter Distributions in Natural Forests: An Evaluation of 10 Statistical Models. Forest Science 61(2): 320-327. https://doi.org/10.5849/forsci.14-070

Lima R.B. de, Bufalino L., Alves F.T., da Silva J.A.A., Ferreira R.L.C., 2017. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species. Anais Da Academai Brasileira De Ciencias 89(2): 1189-1203.

Lindsay S.R., Wood G.R., Woollons R.C., 1996. Stand table modeling through the Weibull distribution and usage of skewness information. For. Ecol. Manage 81: 19-23. https://doi.org/10.1016/0378-1127(95)03669-5

Little S.N., 1983. Weibull diameter distributions for mixed stands of western conifers. Canadian Journal of Forest Research 13 (1): 85-88. https://doi.org/10.1139/x83-012

McCrohan K.F., Harvey J.W., 1989. A comparison of dummy variable versus traditional multiple discriminant function analysis. Health Marketing Quarterly 6(4): 147-157. https://doi.org/10.1300/J026v06n04_11

Meyer H.A., 1952. Structure, growth, and drain in balanced uneven-aged forests. Journal of Forestry 50(2): 85-92. https://doi.org/10.1093/jof/50.2.85

Miranda R., Fiorentin L., Péllico Netto S., Juvanhol R., Corte A.D., 2018. Prediction system for diameter distribution and wood production of Eucalyptus. Floresta e Ambiente 25(3): e20160548. https://doi.org/10.1590/2179-8087.054816

Mønness E.N., 1982. Diameter distributions and height curves in even-aged stands of Pinus sylvestris L. Reports of the Norwegian Forest Research Institute 36(15): 43 p.

Nelson T.C., 1964. Diameter distribution and growth of loblolly pine. Forest Science 10(1): 105-114. https://doi.org/10.1093/forestscience/10.1.105

Nixon K.C., 1993. Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Annals of Forest Science 36: 25-34. https://doi.org/10.1051/forest:19930701

Oettel J., Lapin K., Kindermann G., Steiner H., Schweinzer K.M., Frank G., Essl F., 2020. Patterns and drivers of deadwood volume and composition in different forest types of the Austrian natural forest reserves. Forest Ecology and Management 463: 118016. https://doi.org/10.1016/j.foreco.2020.118016

Özçelik R., Diamantopoulou M.J., Crecente-Campo F., Eler U., 2013. Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models. Forest Ecology and Management 306: 52-60. https://doi.org/10.1016/j.foreco.2013.06.009

Perea R., López-Sánchez A., Dirzo R., 2017. Differential tree recruitment in California oak savannas: Are evergreen oaks replacing deciduous oaks? Forest Ecology and Management 399: 1-8. https://doi.org/10.1016/j.foreco.2017.05.018

Pérez-López E., Santiago-García W., Quiñonez-Barraza G., Rodríguez-Ortiz G., Santiago-García E., Ruiz-Aquino F. 2019. Estimation of diameter distributions for Pinus patula with the Weibull function. Madera y Bosques 25(3): e2531626. http://doi.org/10.21829/myb.2019.2531626

Podlaski R., Zasada M., 2008. Comparison of selected statistical distributions for modelling the diameter distributions in near-natural Abies-Fagus forests in the Świętokrzyski National Park (Poland). European Journal of Forest Research 127(6): 455-463. https://doi.org/10.1007/s10342-008-0229-3

Pogoda P., Ochał W., Orzeł S., 2019. Modeling diameter distribution of black alder (Alnus glutinosa (L.) Gaertn.) stands in Poland. Forests 10(5): 412. https://doi.org/10.3390/f10050412

Quiñonez-Barraza G., De los Santos Posadas H.M., Cruz-Cobos F., Martinez A.V., Perez G.Á., Valverde G.R., 2015. Dynamic modeling for diameter distribution on Pinus mixed stands in Durango, Mexico. Madera y Bosques 21(2): 59-71.

Souza Retslaff F.A. de, Figueiredo Filho A., Dias A.N., Bernett L.G., Figura M.A., 2012. Growth and yield prognosis in diameter classes for thinning Eucalyptus grandis stands in Brazil south. Revista Árvore 36(4): 719-732. https://doi.org/10.1590/S0100-67622012000400013

Samarasinghe S., 2006. Neural networks for applied sciences and engineering. Florida, USA: Taylor and Francis Inc. 608 p.

Schreuder H.T., Swank W.T., 1974. Coniferous stands characterized by the Weibull distribution. Canadian Journal of Forest Research 4: 518-523. https://doi.org/10.1139/x74-075

Schütz J.P., Rosset C., 2020. Performances of different methods of estimating the diameter distribution based on simple stand structure variables in monospecific regular temperate European forests. Annals of Forest Science 77(47): 1-11. https://doi.org/10.1007/s13595-020-00951-3

Scrinzi G., Marzullo L., Galvagni D., 2007. Development of a neural network model to update forest distribution data for managed alpine stands. Ecological Modelling 206(3-4): 331-346. https://doi.org/10.1016/j.ecolmodel.2007.04.001

Siipilehto J., 1999. Improving the accuracy of predicted basal-area diameter distribution in advanced stands by determining stem number. Silva Fennica 33(2): 281-301. https://doi.org/10.14214/sf.650

Smalley G.W., Bailey R.L., 1974. Yield tables and stand structure for loblolly pine plantations in Tennessee, Alabama, and Georgia highlands. USDA For. Serv. Res: Paper SO-96. 81 p.

Sun S.C., Cao Q.V., Cao T.J., 2019. Characterizing diameter distributions for uneven-aged pine-oak mixed forests in the Qinling mountains of China. Forests 10(7):596. https://doi.org/10.3390/f10070596

Wang M., Borders B.E., Zhao D., 2008. An empirical comparison of two subject-specific approaches to dominant heights modeling-the dummy variable method and the mixed model method. Forest Ecology and Management 255(7): 2659-2669. https://doi.org/10.1016/j.foreco.2008.01.030

Wang W.W., Chen X.Y., Zeng W.S., Wang J.J., Meng J.H., 2019. Development of a mixed-effects individual-tree basal area increment model for Oaks (Quercus spp.) considering forest structural diversity. Forests 10(6): 474. https://doi.org/10.3390/f10060474

Weibull W., 1951. A statistical distribution function of wide applicability. J. Appl. Mech 18: 293-297. https://doi.org/10.1093/qjmam/6.4.453

Wekesa J.S., Luan Y, Chen M, Meng J., 2019. A hybrid prediction method for plant lncRNA-protein interaction. Cells 8(6): 521. https://doi.org/10.3390/cells8060521

Zankis S.H., 1979. A simulation study of some simple estimations for the 3-parameter Weibull distribution. Journal of Statistical Computation and Simulation 9: 101-116. https://doi.org/10.1080/00949657908810302

Zhang L., Ye Y., Zeng W., Chiaradia A., 2019. A systematic measurement of street quality through multi-sourced urban data: a human-oriented analysis. Int J Environ Res Public Health 16(10): 1782. https://doi.org/10.3390/ijerph16101782


Untitled
| DOWNLOAD 33KB
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Shisheng Long
  • Siqi Zeng
  • Guangxing Wang
  • Shisheng Long
  • Siqi Zeng
  • Guangxing Wang