Influence of spectral quality on the rooting of Corymbia and Eucalyptus spp. minicuttings

Authors

  • Denys Matheus Santana Costa Souza Federal University of Lavras, Department of Forest
  • Maria Lopes Martins Avelar Federal University of Lavras, Department of Forest Sciences
  • Eduardo Oliveira Silva Federal University of Maranhão, Coordination of Natural Sciences, Codó Campus
  • Vinícius Politi Duarte Federal University of Lavras, Department of Botany
  • Douglas Santos Gonçalves Federal University of Lavras, Department of Forest Sciences
  • Letícia Vaz Molinari Federal University of Lavras, Department of phytopathology
  • Gilvano Ebling Brondani Federal University of Lavras, Department of Forest Sciences

DOI:

https://doi.org/10.15287/afr.2022.2074

Keywords:

Cloning, Minicuttings, Vegetative propagation, Wavelength.

Abstract

The pursuit of better adaptation in clonal plants seedling production processes based on the minicutting technique has expanded the use of species and hybrid combinations of genera Corymbia and Eucalyptus in the composition of commercial crops. The aim of the work was to evaluate the effect of spectral quality on the rooting of Eucalyptus andrewsii, E. saligna, E. microcorys, E. cloeziana, E. pilularis, E. grandis, E. grandis × E. urophylla and Corymbia torelliana minicuttings to help better understanding the production of clonal plants. E. grandis × E. urophylla and C. torelliana root anatomy was analyzed. The effects of spectral quality on the rooting of minicuttings were evaluated based on three sources (fluorescent, red and blue). Survival (SUR), callogenesis (CAL), oxidation (OXI) and rooting (RO) percentage; length (RL) and diameter of the largest root (ROD); mean number of roots per minicutting (NRM), root epidermis thickness (RET), root cortex diameter (RCD), diameter of the root vascular cylinder (DRVC) and root diameter (RD) were evaluated at 30 days. Based on the results, wavelength specificity was a useful technology to optimize the large-scale production of clonal plants of Eucalyptus. Fluorescent spectral quality was the most appropriate source in the rooting of E. saligna (68.7%), E. microcorys (43.7%), E. pilularis (75.0%) and C. torelliana (75.0%) minicuttings; blue spectral quality was the most appropriate for E. andrewsii (55.5%), E. grandis (75.0%) and E. grandis × E. urophylla (81.3%); and red spectral quality was the most appropriate for E. cloeziana (56.2%).

References

Abiri R., Atabaki N., Abdul-Hamid H., Sanusi R., Ab Shukor N.A., Shaharuddin N.A., ... Malik S., 2020. The prospect of physiological events associated with the micropropagation of Eucalyptus sp. Forests, 11(11): 1211. https://doi.org/10.3390/f11111211Batista D.S., Felipe S.H.S., Silva T.D., de Castro K.M., Mamedes-Rodrigues T.C., Miranda N.A., ... Otoni W.C., 2018. Light quality in plant tissue culture: does it matter? In Vitro Cellular & Developmental Biology- Plant, 54(3): 95–215. https://doi.org/10.1007/s11627-018-9902-5Braga F.T., Pasqual M., Castro E.M.De, Dignart S.L., Biagiotti G., Porto J.M.P., 2009. Qualidade de luz no cultivo in vitro de Dendranthema grandiflorum cv. Rage: caracteristicas morfofisiológicas. Ciência e Agrotecnologia 3(2): 502–508. https//doi.org/10.1590/ S1413-70542009000200022Brondani G.E., Oliveira L.S., Konzen E.R., Da Silva A.L.L., Costa J.C., 2018. Mini-incubators improve the adventitious rooting performance of Corymbia and Eucalyptus microcuttings according to the environment in which they are conditioned. Anais da Academia Brasileira de Ciências 90(2): 2409–2423. https//doi. org/10.1590/0001-3765201720170284De Almeida M.R., Aumond J.R.M., Da Costa C.T., Schwambach J., Ruedell C.M., Correa L.R., Fett-Neto A.G., 2017. Environmental control of adventitious rooting in Eucalyptus and Populus cuttings. Trees 31(5): 1377–1390. https//doi.org/10.1007/s00468-017-1550-6 Díaz Sala C.A., 2020. Perspective on adventitious root formation in tree species. Plants 9(1):1789. https://doi. org/10.3390/plants9121789Douglas G.B., Mcivor I.R., Lloyd-West C.M., 2016. Early root development of field-grown poplar: effects of planting material and genotype. New Zealand Journal of Science 46(1): 1–14. https//doi.org/10.1186/s40490- 015-0057-4Estevez R.L., Chambo A.P.S., Stangarlin J.R., Kuhn O.J., 2020. Doses of calcium sulphate increase the peroxidase activity and the rooting of eucalyptus clones. Ciência Florestal 30(1): 396–405. https://doi. org/10.5902/1980509834369Faria D.V., Correia L.N.F., Souza M.V.C., Ríos A.M.R., Vital C.E., Batista D.S., Costa M.G.C., Otoni W.C., 2019. Irradiance and light quality affect two annatto (Bixa orellana L.) cultivars with contrasting bixin production. Journal of Photochemistry & Photobiology 197(1): 1011–1344. https//doi.org/10.1016/j. jphotobiol.2019.111549Favetta V, Colombo RC, Júnior JFM, Faria RT (2017) Light sources and culture media in the in vitro growth of the Brazilian orchid Microlaelia lundii. Ciências Agrárias 38: 1775–1784.Ferreira E.B., Cavalcanti P.P., Nogueira D.A., 2013. ExpDes: Experimental Designs package. R packageversion 1.1.2. 2013.Freitas A.F., Paiva H.N., Xavier A., Neves J.C.L., 2017. Produtividade de minicepas e enraizamento de miniestacas de híbridos de Eucalyptus globulus Labill. em resposta a nitrogênio. Ciência Florestal 27(1): 193– 202. https//doi.org/10.5902/1980509826458Hartmann H.T., Kester D.E., Junior Davies F.T., Geneve R.L., 2011. Plant propagation: principles and practices. 8.ed. New Jersey: Englewood Clipps, 900 p.Hsie B.S., Bueno A.I.S., Bertolucci S.K.V., Carvalho A.A., Cunha S.H.B., Martins E.R., Pinto J.E.B., 2019. Study of the influence of wavelengths and intensities of LEDs on the growth, photosynthetic pigment, and volatile compounds production of Lippia rotundifolia Cham in vitro. Journal of Photochemistry and Photobiology Biology 198: 111577. https//doi.org/10.1016/j. jphotobiol.2019.111577Hung C.D., Hong C.H., Jung H.B., Kim S.K., Van Ket N., Nam M.W., Choi D.H., Lee H.I., 2015. Growth and morphogenesis of encapsulated strawberry shoot tips under mixed LEDs. Scientia Horticulturae 194(1): 194–200. https//doi.org/10.1016/j.scienta.2015.08.016IPEF, 1984. Procedências de Eucalyptus spp. Introduzidas no Brasil por diferentes entidades. Piracicaba 10(29): 1–259.Johansen D.A., 1940. Plant microtechnique. London: McGraw-Hill Book Company. [cited 2019 December 06]. Available from: https://krishikosh.egranth.ac.inKuppusamya S., Ramanathanb S., Sengodagounderb S., Senniappanb C., Brindhadevic K., Kaliannana T., 2019. Minicutting - A powerful tool for the clonal propagation of the selected species of the Eucalyptus hybrid clones based on their pulpwood studies. Biocatalysis and Agricultural Biotechnology 22: 101357. https//doi. org/10.1016/j.bcab.2019.101357Lazzarini L.E.S., Pacheco F.V., Silva S.T., Coelho A.D., Medeiros A.P.R., Bertolucci S.K.V., Pinto J.E.B.P., Soares J.D.R., 2017. Uso de diodos emissores de luz (led) na fisiologia de plantas cultivadas – revisão. Scientia Agraria Paranaensis 16(2): 137–144. https//doi. org/10.18188/1983-1471/sap.v16n1p137-144Lee H.J., Ha J.H., Kim S.G., Choi H.K., Kim Z.H., Han Y.J., Kim J.I.I., Oh Y., Fragoso V., Shin K., Hyeon T., Choi H.G., Oh K.H., Baldwin I.T., Park C.M., 2016. Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Science Signaling 9(452): ra106. https://doi.org/10.1126/ scisignal.aaf6530Luo J., He W., Wu J., Gu X.S., 2019. Sensitivity of Eucalyptus globulus to red and blue light with different combinations and their influence on its efficacy for contaminated soil phytoremediation. Journal of Environmental Management 241(1): 235–242. https://doi.org/10.1016/j.jenvman.2019.04.045Medrado M.J.S., Appezzato-Da-Glória B., Costa J.D., 1995. Anatomical changes in rubber tree cuttings (Hevea brasiliensis clone RRIM 600) in response to different rooting techniques. Scientia Agricola 52(1): 89–95.Nakhooda M., Watt M.P., 2017. Adventitious root formation in Eucalyptus: the role of phytohormones. Acta Horticulturae 1155(1): 505–512. https://doi. org/10.17660/ActaHortic.2017.1155.74Oliveira T. de, Balduino M.C.M., de Carvalho A.A., Bertolucci S.K.V., Cossa M.C., Coelho A.D., ... & Pinto J.E.B.P., 2021. The effect of alternative membrane system, sucrose, and culture methods under photosynthetic photon flux on growth and volatile compounds of mint in vitro. In Vitro Cellular & Developmental Biology-Plant, 57(3): 529-540. https:// doi.org/10.1007/s11627-020-10147-zPinto K.G.D., Albertino S.M.F., Leite B.N., Soares D.O.P., Castro F.M., Gama L.A., & Clivati D., 2020. Indole-3- butyric acid improves root system quality in guarana cuttings. HortScience 55(1): 1670-1675. https://doi. org/10.21273/HORTSCI14984-20Rodrigues D.B., Radke A.K., Sommer L.R., Da Rosa D.S.B., Schuch M.W., & De Assis A.M., 2020. Quality of light and indolbutyric acid in vitro rooting of lavender. Ornalmental Horticulture 26(1): 89-94. https://doi. org/10.1590/2447-536X.v26i1.2112Ruedell C.M., De Almeida M.R., Schwambach J., Posenato C.F., Fett-Neto A.G., 2013. Pre and post-severance effects of light quality on carbohydrate dynamics and microcutting adventitious rooting of two Eucalyptus species of contrasting recalcitrance. Plant Growth Regulation 69(3): 235-245. https://doi.org/10.1007/ s10725-012-9766-3Santana-Buzzy N., Canto-Flick A., Pérez Barahona F., Castillo-Zapata P.L., Colli-Zaldívar A., Peniche- Montalvo M.C., Ruiz-Solís A., Alonso Gutierrez O., 2005. Regeneration of Habanero pepper (Capsicum chinense Jacq.) via organogenesis. Horticultural Science 40(6): 1829-1831. https://doi.org/10.21273/ HORTSCI.40.6.1829Smirnakou S., Ouzounis T., Radoglou K., 2016. Effects of continuous spectrum LEDs used in indoor cultivation of two coniferous species Pinus sylvestris L. and Abies borisii-regis Mattf. Scandinavian Journal of Forest Research 31(1): 115-122. https://doi.org/10.1080/02827581.2016.1227470Snowden M.C., Cope K.R., Bugbee B., 2016. Sensitivity of seven diverse species to blue and green light: Interactions with photon flux. Plos One 11(1): e0163121. https://doi.org/10.1371/journal.pone.0163121Souza D.M.S.C., Fernandes S.B., Avelar M.L.M., Frade S.R.P., Molinari L.V., Gonçalves D.S., Pinto J.E.B.P., Brondani G.E. 2020a. Light quality in micropropagation of Eucalyptus grandis × Eucalyptus urophylla. Scientia Forestalis 48(127): e3329. https://doi.org/10.18671/ scifor.v48n127.03Souza D.M.S.C., Xavier A., Miranda N.A., Gallo R., Santos G.A., Valente B.M.R.T., Otoni W.C., 2020b. Photomixotrophism on in vitro elongation of Corymbia hybrid clones. Scientia Forestalis, 48(128): e3436. https://doi.org/10.18671/scifor.v48n128.11Souza D.M.S.C., Fernandes S.B., Silva E.O., Duarte V.P., Gonçalves D.S., Carvalho D., Teixeira G.L,, Brondani G.E., 2021. Effect of light intensity on in vitro introduction and multiplication of Eucalyptus grandis × Eucalyptus urophylla. In Vitro Cellular & Developmental Biology-Plant 58(2): 225-239. https:// doi.org/10.1007/s11627-021-10237-6Tambarussi E.V., Pereira F.B., Silva P.H.M., Lee D., Bush D., 2018. Are tree breeders properly predicting genetic gain? A case study involving Corymbia species. Euphytica 214: 150. https://doi.org/10.1007/s10681-018-2229-9Trueman S. J., Hung C.D., Wendling I., 2018. Tissue culture of Corymbia and Eucalyptus. Forests 9(2): 84. https://doi.org/10.3390/f9020084Xavier A., Wendling I., Silva R.L., 2013. Silvicultura clonal - princípios e técnicas. Viçosa, Editora UFV. 279 p.Yang J., Wang J., Liu Z., Xiong T., Lan J., Han Q., Li Y., Kang X., 2018. Megaspore chromosome doubling in Eucalyptus urophylla S.T. Blake induced by colchicine treatment to produce triploids. Forests 9(11): 728. https://doi.org/10.3390/f9110728Zhao Y., Guo W.H., Sun X.Y., Li K.H., Liu K.J., Wang J., Wang Y., Tan X., Yo X.L., 2020. A culture system for the stable and high-efficiency proliferation of adventitious roots of Panax notoginseng and ginsenoside accumulation. Industrial Crops & Products 157: 112882. https://doi.org/10.1016/j.indcrop.2020.112882

Downloads

Published

2022-07-01 — Updated on 2023-04-26

Versions

Issue

Section

Research article