What determines the diversity and succession of lichens inhabiting post-bark beetle snags in the Western Carpathians?

Authors

  • Magdalena Tanona Department of Ecology & Environmental Protection, University of Rzeszów
  • Paweł Czarnota Department of Ecology & Environmental Protection, University of Rzeszów Gorce National Park, Niedźwiedź

DOI:

https://doi.org/10.15287/afr.2022.2146

Keywords:

lichen ecology, lichen succession, lichen diversity, bark beetle outbreaks, deadwood, natural forest disturbances, forest ecology, permanent study plots, Norway spruce snags

Abstract

The life strategy of Norway spruce allows the recovery of European spruce forests in a scenario of catastrophic disturbances caused by the European spruce bark beetle. However, little is known about how the development of this insect infestation has influenced the preservation of the ecological balance in these forests over the last decades. Based on the upper montane spruce forests in the Polish Western Carpathians, we decided to check what species of lichens are using the decaying wood of post-bark beetle snags and how the progressive changes in wood hardness and stand decomposition affect the process of species exchange.In 2018–2019, we investigated spruce snags on permanent monitoring plots in Gorce National Park, whose cause and time of death have been recorded since 1999, and earlier in 1992 and 1997. The study covered 374 post-bark beetle spruce snags at 76 sites. We found 84 species, including 77 lichens, 6 lichenicolous fungi and one non-lichenised fungus, 15 of which were exclusively wood-inhabiting species in Gorce range. Using generalised linear models, the wood age (A) and the scale of the forest stand breakdown phenomenon (B) were compared with the altitude (C), the aspects of hillside exposure (D) and the forest plant community (E) in the assessment of their effect on lichen species diversity and abundance. "A” was the most important of the tested factors, significantly and positively influencing both parameters, while “B–D” only weakly influenced lichen abundance.Five groups of wood age, significantly different in the lichen abundance and the composition of species were distinguished, and a characteristic combination of dominant species was determined for each of them. Based on the measurements of the wood hardness under the thalli using Shore’s method, the succession of species during the colonisation of the post-bark beetle snags was determined and four groups of species were selected, most frequent in the successive stages of wood decay process.The wood of spruces killed by the bark beetle is both an important substrate enabling the survival of obligately wood-inhabiting lichen species, as well as providing a habitat supporting the maintenance of epiphytes in the Carpathian forests. This study extends the knowledge about the specific requirements of lichens inhabiting spruce snags, as well as the pace and course of lichen succession on this substrate

References

Ardelean I., Keller C., Scheidegger C., 2015. Eff of management on lichen species richness, ecological traits and community structure in the Rodnei Mountains National Park (Romania). PloS One 10(12): e0145808. https://doi.org/10.1371/journal.pone.0145808Bacchus B.R., Da Silva P.N.B., 2021. A preliminary investigation of corticolous lichen diversity in urban and suburban sites in New Amsterdam, Berbice, Guyana. Int J Sci Res 11: 277–286. https://doi.org/10.29322/IJSRP.11.02.2021.p11033Bässler C., Müller J., Cadotte M.W., Heibl Ch., Bradtka J.H., Thorn S., Halbwachs H., 2016. Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecol Indic 65: 149–160. https://doi.org/10.1016/j. ecolind.2015.07.008Breiman L., Friedman J.H., Olshen R.A., Stone C.J., 1984. Classification and regression trees. Chapman and Hall, New York, USA, 368 p.Brodeková L., Gilmer A., Dowding P., Fox H., Guttova A., 2006. An assessment of epiphytic lichen diversity and environmental quality in Knocksink Wood Nature Reserve, Ireland. Biol Environ 106: 215–223. https://doi. org/10.3318/BIOE.2006.106.3.215Bunnell F., Spribille T., Houde I., Goward T., Björk C., 2008. Lichen on down wood in logged and unlogged forest stands. Can J For Res 38: 1033–1041. https://doi. org/10.1139/X07-206Čada V., Morrissey R.C., Michalová Z., Bače R., Janda P., Svoboda M., 2016. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For Ecol Manag 363: 169–178.Caruso A., Rudolphi J., 2009. Infl of substrate age and quality on species diversity of lichens and bryophytes on stumps. The Bryologist 112(3): 520–531. https://doi. org/10.1639/0007-2745-112.3.520Caruso A., Thor G., Snäll T., 2010. Colonization-extinction dynamics of epixylic lichens along a decay gradient in a dynamic landscape. Oikos 119(12): 1947–1953. https:// doi.org/10.1111/j.1600-0706.2010.18713.xChwistek K., 2001. Dynamic of tree stands in the Gorce National Park (Southern Poland) during the period 1992– 1997. Nat Conserv 58: 17–32.Cieśliński S., Czyżewska K., Fabiszewski J., 2006. Red list of the lichens in Poland. In: Mirek Z., Zarzycki K., Wojewoda W., Szeląg Z. (eds), Red list of plants and fungi in Poland. Szafer Institute of Botany PAN, Kraków, pp. 71–90.Czarnota P., 2012. Lichen protection needs natural forest disturbances - examples from some Polish Western Carpathian national parks. In: Lipnicki L. (ed.), Lichen protection - protected lichen species. Sonar, Gorzów Wielkopolski, pp. 53–66.Czarnota P., Stefanik M. (eds), 2015. Gorczański Park Narodowy: przyroda i krajobraz pod ochroną. Gorczański Park Narodowy, Poręba Wielka, 320 p.Czarnota P., Tanona M., 2020. Species of lichenized Ascomycota new to Polish Western Carpathians and rare in whole Carpathians. Folia Cryptog Estonica 57: 21–32. https://doi.org/10.12697/fce.2020.57.04Daly A., Baetens J., De Baets B., 2018. Ecological diversity: measuring the unmeasurable. Mathematics 6: 119. https:// doi.org/10.3390/math6070119D’Aguanno M., Perini C., Cantini D., Salerni E., 2016. Analysis of diversity of wood-inhabiting fungi retrieved from a Mediterranean forest dominated by Pinus pinaster Aiton. Ital J Mycol 45: 1–12. https://doi.org/10.6092/ issn.2531-7342/6072De Grandpré L., Waldron K., Bouchard M., Gauthier S., Beaudet M., Ruel J.-C., Hébert C., Kneeshaw D.D., 2018. Incorporating insect and wind disturbances in a natural disturbance-based management framework for the boreal forest. Forests 9(8): 471. https://doi. org/10.3390/f9080471Diederich P., Lawrey J., Ertz D., 2018. The 2018 classification and checklist of lichenicolous fungi, with 2000 non-lichenized, obligately lichenicolous taxa. The Bryologist 121: 340–425.Dittrich S., Jacob M., Bade C., Leuschner Ch., Hauck M., 2014. The signifi of deadwood for total bryophyte, lichen, and vascular plant diversity in an old-growth spruce forest. Plant Ecol 215: 1123–1137. https://doi. org/10.1007/s11258-014-0371-6Fahey R.T., Puettmann K., 2007. Ground-layer disturbance and initial conditions infl gap partitioning of understorey vegetation. J Ecol 95: 1098–1109Fahse L., Heurich M., 2011. Simulation and analysis of outbreaks of bark beetle infestations and their management at the stand level. Ecol Model 222: 1833– 1846. https://doi.org/10.1016/j.ecolmodel.2011.03.014Fukasawa Y., Ando Y., Oishi Y., Matsukura K., Okano K., Song Z., Sakuma D., 2019. Eff of forest dieback on wood decay, saproxylic communities, and spruce seedling regeneration on coarse woody debris. Fungal Ecol 41: 198–208. https://doi.org/10.1016/j.funeco.2019.05.004Gazda A., Kościelniak P., Hardy M., Muter E., Kędra K., Bodziarczyk J., Frączek M., Chwistek K., Różański W., Szwagrzyk J., 2018. Upward expansion of distribution ranges of tree species: Contrasting results from two national parks in Western Carpathians. Sci Total Environ 653: 920–929. https://doi.org/10.1016/j. scitotenv.2018.10.360Grebner D.R., Bettinger P., Siry J.P., 2013. Forest disturbances and health. In: Grebner D.R., Bettinger P., Siry J.P. (eds), Introduction to forestry and natural resources. Academic Press, pp. 323–358. https://doi. org/10.1016/B978-0-12-386901-2.00014-2Guo Y., Zhao P., Yue M., 2019. Canopy disturbance and gap partitioning promote the persistence of a pioneer tree population in a near-climax temperate forest of the Qinling Mountains, China. Ecol Evol 9: 7676–7687. https://doi.org/10.5061/dryad.4b562r8Hartl-Meier C., Zang C., Dittmar C., Esper J., Göttlein A., Rothe A., 2014. Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim Res 60: 119–132. https://doi.org/10.3354/cr01226Haughian S., Frego K., 2017. Does CWD mediate microclimate for epixylic vegetation in boreal forest understories? A test of the moisture-capacitor hypothesis. For Ecol Manag 389: 341–351. https://doi.org/10.1016/j. foreco.2017.01.011Holien H., 1996. Influence of site and stand factors on the distribution of crustose lichens of the Caliciales in a suboceanic spruce forest area in Central Norway. Lichenologist 28(4): 315–330. https://doi.org/10.1006/ lich.1996.0029Humphrey J.W., Davey S., Peace A.J., Ferris R., Harding K., 2002. Lichens and bryophyte communities of planted and semi-natural forests in Britain: the infl of site type, stand structure and deadwood. Biol Conserv 107: 165–180. https://doi.org/10.1016/S00063207(02)00057-5Index Fungorum search page. http://www.indexfungorum. org/names/names.asp. Accessed 07 January 2021.Jakoby O., Lischke H., Wermelinger B., 2019. Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus). Glob Chang Biol 25(12): 4048–4063. https://doi.org/10.1111/ gcb.14766Jost L., 2009. Mismeasuring biological diversity: Response to Hoffmann and Hoff mann (2008). Ecol Econ 68: 925–928. https://doi.org/10.1016/j.ecolecon.2008.10.015Kern Ch.C., Montgomery R.A., Reich P.B., Strong T.F., 2013. Canopy gap size influence niche partitioning of the ground-layer plant community in a northern temperate forest. J Plant Ecol 6(1): 101–112. https://doi. org/10.1093/jpe/rts016Kharpukhaeva T.M., Mukhortova L.V., 2016. Dynamics of interaction between lichens and fallen deadwood in forest ecosystems of the eastern Baikal region. Contemp Prob Ecol 9(1): 125–139. https://doi.org/10.1134/ S1995425516010066Khastini R., Sari I., Herysca Y., Sulasanah S., 2019. Lichen diversity as indicators for monitoring ecosystem health in Rawa Danau Nature Reserve, Banten, Indonesia. Biodiversitas 20: 489–496. https://doi.org/10.13057/ biodiv/d200227Kricher J.C., 1972. Bird species diversity: the eff of species richness and equitability on the diversity index. Ecology 53: 278–282. https://doi.org/10.2307/1934082Kruys N., Jonsson B.G., 1999. Fine woody debris is important for species richness on logs in managed boreal spruce forests of northern Sweden. Can J For Res. 29(8): 1295–1299. https://doi.org/10.1139/x99-106Kushnevskaya E., Shorohova E., 2018. Presence of bark infl the succession of cryptogamic wood- inhabiting communities on conifer fallen logs. Folia Geobot 53(2): 175–190. https://doi.org/10.1007/s12224- 018-9310-yLangbehn T., Hofmeister J., Svitok M., Mikoláš M., Matula R., Halda J., Svobodová K., Pouska V., Kameniar O., Kozák D., Janda P., Čada V., Bače R., Frankovic M., Vostarek O., Gloor R., Svoboda M., 2021. The impact of natural disturbance dynamics on lichen diversity and composition in primary mountain spruce forests. J Veget Sci 32(5): e13087. https://doi.org/10.1111/jvs.13087Larsson T.B., Angelstam P., Balent G., Barbati A., Bijlsma R.J., Boncina A., Bradshaw R., Bücking W., Ciancio O., Corona P., Diaci J., Dias S., Ellenberg H., Fernandes F.M., Fernández-González F., Ferris R., Frank G., Moller P.F., Giller P., Marchetti M., 2001. Biodiversity evaluation tools for European forests. Oxford, Blackwell Science, Ecol Bullet 50.Loch J., Armatys P., 2008. Puszcza Karpacka w Gorcach – historia, stan zachowania i problemy ochrony. Roczniki Bieszczadzkie 16: 109–124.Loch J., Armatys P., 2014. Monitoring posuszu świerka w drzewostanach Gorczańskiego Parku Narodowego w latach 2000–2013. Ochrona Beskidów Zachodnich 5: 20–31 (in Polish). https://www.gorczanskipark.pl/ UserFiles/File/Nauka/OBZ/zeszyt%205/Ochrona%20 Beskidow%202%20J_%20Loch%20&%20P_%20 Armatys.pdf. Accessed 13 February 2022.Lõhmus P., Lõhmus A., 2001. Snags, and their lichen flora in old Estonian peatland forests. Ann Bot Fenn 38(4): 265–280. https://www.jstor.org/stable/23726702. Accessed 06 January 2022.Magnusson H., 2010. Epixylic lichens and bryophytes in young managed forests: substrate preferences and amounts of dead wood. Doctoral Dissertation, Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, 23 p. https://stud.epsilon.slu.se/1682/1/ magnusson_h_101101.pdf. Accessed 29 October 2020.Marcot B.G., 2017. Ecosystem processes related to wood decay. USDA Forest Service, Pacifi Northwest Research Station, Portland. Research Note PNW-RN-576.Marini L., Økland B., Jönnson A.M., Bentz B., Carroll A., Forster B., Grégoire J.C., Hurling R., Nageleisen L.M., Netherer S., Ravn H.P., Weed A., Schroeder M., 2017. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40: 1426–1435.Matuszkiewicz W., 2005. Przewodnik do oznaczania zbiorowisk roślinnych Polski. PWN, Warszawa.Maser C., Anderson R.G., Comack K. Jr, Williams J.T., Martin R.E., 1979. Dead and down woody material. In: Thomas J.W. (ed.), Wildlife Habitats in Managed Forests: The Blue Mountains of Oregon and Washington, USDA Forest Service Agriculture Handbook 877: 78–95.MCPFE, 2007. Ministerial conference on the protection of forests in Europe, 2007. State Of Europe’s Forests. The MCPFE report on sustainable forest management in Europe. Ministerial Convention on Protection of Forests in Europe, Liaison Unit, Vienna, Austria.McRoberts R.E., Winter S., Chirici G., Lapoint E., 2012. Assessing forest naturalness. For Sci 58: 294–309. https://doi.org/10.5849/forsci.10-075Medwecka-Kornaś A., 2006. Szata roślinna Gorców i jej dotychczasowe badania. Ochrona Beskidów Zachodnich 1: 23–32.Merganičová K., Merganič J., Svoboda M., Bače R., Šebeň V. 2012. Deadwood in forest ecosystems. In: Blanco J., Lo Y.-H. (eds), Forest Ecosystems: more than just trees. IntechOpen, Rijeka, Croatia, pp. 81–108. https://doi. org/10.5772/31003Morris E.K., Caruso T., Buscot F., Fischer M., Hancock Ch., Maier T.S., Meiners T., Müller C., Obermaier E., Prati D., Socher S.A., Sonnemann I., Wäschke N., Wubet T., Wurst S., Rillig M.C., 2014. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol Evol 4(18): 3514–3524. https://doi.org/10.1002/ece3.1155Müller J., Bußler H., Gossner M., Rettelbach T., Duelli P., 2008. The European spruce bark beetle Ips typographus in a national park: From pest to keystone species. Biodivers Conserv. 17: 2979-3001. https://doi.org/10.1007/s10531-008-9409-1Myllys L., Launis A., 2018. Additions to the diversity of lichens and lichenicolous fungi living on decaying wood in Finland. Graphis Scripta 30(6): 78–87.Nagendra H., 2002. Opposite trends in response for Shannon and Simpson indices of landscape diversity. Appl Geogr 22: 175–186. https://doi.org/10.1016/S0143-6228(02)00002-4Nascimbene J., Marini L., Caniglia G., Cester D., Nimis P., 2008. Lichen diversity on stumps in relation to wood decay in subalpine forests of Northern Italy. Biodivers Conserv 17: 2661–2670. https://doi.org/10.1007/s10531-008-9344-1Netherer S., Kandasamy D., Jirosová A., 2021. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J Pest Sci 94: 591–614. https://doi.org/10.1007/s10340-021- 01341-yNeumann M., Mues V., Moreno A., Hasenauer H., Seidl R., 2017. Climate variability drives recent tree mortality in Europe. Glob Change Biol 23: 4788–4797. https://doi. org/10.1111/gcb.13724Ódor P., Heilmann-Clausen J., Christensen M., Aude E., van Dort K., Piltaver A., Siller I., Veerkamp M., Walleyn R., Standovár T., Hees A., Kosec J., Matočec N., Kraigher H., Grebenc T., 2006. Diversity of dead wood inhabiting fungi and bryophytes in semi-natural beech forests in Europe. Biologic Conserv 131: 58–71. https://doi. org/10.1016/j.biocon.2006.02.004Opdyke M.R., Dolney B.E., Frost L.L., Roy J.D. 2011. A study of epiphytic lichen communities in urban and rural environments in southwestern Pennsylvania. J Pa Acad Sci, 85(4): 151–158. http://www.jstor.org/stable/10.5325/ jpennacadscie.85.4.0151Pallmann P., Schaarschmidt F., Hothorn L., Fischer C., Nacke H., Priesnitz K., Schork N., 2012. Assessing group diff in biodiversity by simultaneously testing a user-defi selection of diversity indices. Mol Ecol Resour 12: 1068–1078.Pouska V., Svoboda M., Lepšová A., 2010. The diversity of wood-decaying fungi in relation to changing site conditions in an old-growth mountain spruce forest, Central Europe. Europ J For Res 129: 219–231. https:// doi.org/10.1007/s10342-009-0324-0Preikša Z., Brazaitis G., Marozas V., Jaroszewicz B., 2015. Dead wood quality infl species diversity of rare cryptogams in temperate broadleaved forests. iForest 9: 276–285. https://doi.org/10.3832/ifor1483-008Przepióra F., Loch J., Ciach M., 2020. Bark beetle infestation spots as biodiversity hotspots: Canopy gaps resulting from insect outbreaks enhance the species richness, diversity and abundance of birds breeding in coniferous forests. For Ecol Manag 473: 118280. https://doi.org/10.1016/j.foreco.2020.118280Radu S., 2007. The ecological role of deadwood in natural forests. In: Gafta D., Akeroyd J. (eds), Nature conservation: concept and practise. Environ Sci Eng (Environ Sci), Springer, Berlin, Heidelberg, pp. 137–141. doi:10.1007/978-3-540-47229-2_16Rashmi S., Rajkumar G., 2019. Diversity of lichens along elevational gradients in forest ranges of Chamarajanagar District, Karnataka State. IJSRBS 6: 97–104. https://doi. org/10.26438/ijsrbs/v6i1.97104Roberts T.M., Skeffington R.A., Blank L.W., 1989. Causes of type 1 spruce decline in Europe. Forestry 62(3), 179– 222. https://doi.org/10.1093/forestry/62.3.179-aSantaniello F., Djupström L.B., Ranius T., Weslien J., Rudolphi J., Thor G., 2017. Large proportion of wood dependent lichens in boreal pine forest are confined to old hard wood. Biodivers Conserv 26: 1295–1310. https://doi.org/10.1007/s10531-017-1301-4Shannon C., 1948. A mathematical theory of communication. Bell Syst Tech J 27: 379–423. https:// doi.org/10.1002/j.1538-7305.1948.tb01338.xSmith C.W., Aptroot A., Coppins B.J., Fletcher A., Gilbert O.L., James P.W., Wolseley P.A., (eds) 2009. The lichens of Great Britain and Ireland. British Lichen Society, London.Söderström L., 1988. Sequence of bryophytes and lichens in relation to substrate variables of decaying coniferous wood in Northern Sweden. Nord J Bot 8: 89–97. https:// doi.org/10.1111/j.1756-1051.1988.tb01709.xSpribille T., Thor G., Bunnell F.L., Goward T., Björk C.R., 2008. Lichens on dead wood: species-substrate relationships in the epiphytic lichen fl of the Pacifi Northwest and Fennoscandia. Ecography 31: 741–750. https://www.jstor.org/stable/30244635. Accessed 29 October 2020.Staniaszek-Kik M., Chmura D., Żarnowiec J., 2019. What factors influence colonization of lichens, liverworts, mosses and vascular plants on snags? Biologia 74: 375– 384. https://doi.org/10.2478/s11756-019-00191-5Stanturf J.A., Palik B.J., Dumroese R.K., 2014. Contemporary forest restoration: a review emphasizing function. For Ecol Manag 33: 292–323. https://doi. org/10.1016/j.foreco.2014.07.029StatSoft, 2006. Drzewa klasyfikacyjne i regresyjne (C&RT). In: StatSoft. Internetowy Podręcznik Statystyki. Kraków, Poland (in Polish). https://www.statsoft.pl/textbook/ stathome.html. Accessed 10 November 2020.Svensson M., Johansson V., Dahlberg A., Frisch A., Thor G., Ranius T., 2016. The relative importance of stand and dead wood types for wood-dependent lichens in managed boreal forests. Fungal Ecol. 20: 166–174. https://doi. org/10.1016/j.funeco.2015.12.010Tanona M., Czarnota P., 2019. Natural disturbances of the structure of Norway spruce forests in Europe and their impact on the preservation of epixylic lichen diversity: A review. Ecol Quest 30(4): 7–17. https://doi.org/10.12775/ EQ.2019.024Tanona M., Czarnota P., 2020. Index of Atmospheric Purity refl the ecological conditions better than the environmental pollution in the Carpathian forests. J Mount Sci 17: 2691–2706. https://doi.org/10.1007/ s11629-020-6266-1Thom D., Sommerfeld A., Sebald J., Hagge J., Müller J., Seidl R., 2020. Eff of disturbance patterns and deadwood on the microclimate in European beech forests. Agric For Meteorol 291(15): 108066. https://doi. org/10.1016/j.agrformet.2020.108066Thorn S., Bässler C., Brandl R., Burton P., Cahall R., Campell J., Castro J., Choi C.-Y., Cobb T., Donato D., Durska E., Fontaine J., Gauthier S., Hébert Ch., Hothorn T., Hutto R., Lee E.-J., Leverkus A., Lindenmayer D., Müller J., 2018. Impacts of salvage logging on biodiversity: a meta-analysis. J Appl Ecol. 55(1): 279– 289. https://doi.org/10.1111/1365-2664.12945Tramer E.J., 1969. Bird Species Diversity: Components of Shannon's Formula. Ecology 50: 927–929. doi:10.2307/1933715Vinayaka K.S., Shravanakumar S., Krishnamurthy Y.L., Udupa, S.K., Krishnamurthy Y.L., 2011. Diversity of epiphytic lichens and evaluation of important host species exploited by them in tropical semi-evergreen and deciduous forests of Koppa, Central Western Ghats, India. Asian Australas J Plant Sci Biotechnol 5: 62–66.Vondrák J., Kubásek J., 2019. Epiphytic and epixylic lichens in forests of the Šumava mountains in the Czech Republic; abundance and frequency assessments. Biologia 74: 405–418. https://doi.org/10.2478/s11756-019-00207-0Waddell K.L., 2002. Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Indic 1: 139–153. https://doi.org/10.1016/S1470- 160X(01)00012-7Weaver J.K., Kenefi L.S., Seymour R.S., Brissette J.C., 2009. Decaying wood and tree regeneration in the Acadian Forest of Maine, USA. For Ecol Manag 257: 1623–1628. https://doi.org/10.1016/j.foreco.2009.01.023Werth S., Wagner H., Gugerli F., Holderegger R., Csencsics D., Kalwij J., Scheidegger Ch., 2006. Quantifying dispersal and establishment limitation in a population of an epiphytic lichen. Ecology 87: 2037–2046. https:// doi.org/10.1890/0012-9658(2006)87[2037:qdaeli]2.0.co;2Wężyk P., Hawryło P., Janus B., Weidenbach M., Szostak M., 2018. Forest cover changes in Gorce NP (Poland) using photointerpretation of analogue photographs and GEOBIA of orthophotos and nDSM based on image- matching based approach. Eur J Remote Sens 51(1), 501–510. https://doi.org/10.1080/22797254.2018.1455158Yeom D.J., Kim J.H., 2011. Comparative evaluation of species diversity indices in the natural deciduous forest of Mt. Jeombong. Forest Sci Technol 7(2): 68–74. https://doi.org/10.1080/21580103.2011.573940

Downloads

Published

2022-06-27 — Updated on 2023-04-26

Versions

Issue

Section

Research article