Diversity and prevalence of entomopathogenic fungi (Ascomycota, Hypocreales) in epidemic populations of bark beetles (Coleoptera, Scolytinae) in spruce forests of the Tatra National Park in Slovakia


  • Silvia Hyblerová Research Station of State Forests of TANAP, 059 60 Tatranská Lomnica, Slovakia
  • Juraj Medo Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Trieda Andreja Hlinku 2, 949 76 Nitra, Slovakia
  • Marek Barta Institute of Forest Ecology of the Slovak Academy of Sciences, Akademická 2, 949 01 Nitra, Slovakia




bark beetle outbreaks, Beauveria, Metapochonia, Picea abies, Slovakia


Bark beetles are serious pests for forestry in Slovakia. Their outbreaks may have significant ecological and economic impacts on spruce forests. Effective control of bark beetles is difficult due to their cryptic habits, however, microbial control using entomopathogenic fungi is believed to be a promising alternative to traditional control measures. During 2014–2015, diversity and prevalence of entomopathogenic fungi was studied in populations of bark beetles infesting spruce forests affected by windstorms in the Tatra National Park in Slovakia. Three Beauveria species, B. bassiana, B. caledonica and B. pseudobassiana, together with Metapochonia bulbillosa were identified from 271 specimens of three bark beetle species, Ips typographus, Ips amitinus and Pityogenes chalcographus. Beauveria bassiana was the predominant pathogen and infected all three bark beetle species. Phylogenetic analysis identified three phylogenetic groups of B. bassiana in the evaluated host populations. M. bulbillosa was reported for the first time from bark beetle hosts and Slovakia. The prevalence of fungal infection in natural populations of I. typographus was low and varied between 0.07 and 0.72%.


Agrawal Y., Mual P., Shenoy B.D., 2014. Multi-gene genealogies reveal cryptic species Beauveria rudraprayagi sp. nov. from India. Mycosphere 5(6): 719-736. https://doi.org/10.5943/mycosphere/5/6/3Ariyawansa H.A., Hyde K.D., Jayasiri S.C., Buyck B., Chethana K.W.T. et al., 2015. Fungal diversity notes 111-252-taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers 75(1): 27-274. https://doi. org/10.1007/s13225-015-0346-5Augustyniuk-Kram A., Kram K.J., 2012. Entomopathogenic fungi as an important natural regulator of insect outbreaks in forests (Review). In Blanco J.A., Lo Y.H. (eds.), Forest Ecosystems - More than Just Trees. InTech, Rijeka, pp. 265-294.Barta M., Kautmanová I., Čičková H., Ferenčík J., Florián Š., Novotný J., Kozánek M., 2018a. Hypocrealean fungi associated with populations of Ips typographus in West Carpathians and selection of local Beauveria strains for effective bark beetle control. Biologia 73(1): 53-65. https://doi.org/10.2478/s11756-018-0005-xBarta M., Kautmanová I., Čičková H., Ferenčík J., Florián Š., Novotný J., Kozánek M., 2018b. The potential of Beauveria bassiana inoculum formulated into a polymeric matrix for a microbial control of spruce bark beetle. Biocontrol Science and Technology 28(7): 718- 735. https://doi.org/10.1080/09583157.2018.1487027Barta M., Lalík M., Rel S., Kunca A., Horáková M. K., Mudrončeková S., Galko J., 2019. Hypocrealean fungi associated with Hylobius abietis in Slovakia, their virulence against weevil adults and effect on feeding damage in laboratory. Forests 10(8): 634. https://doi. org/10.3390/f10080634Barta M., Takov D., Pilarska D., Doychev D., Horáková M. K., 2020. Entomopathogenic fungi of the genus Beauveria and their pathogenicity to Ips typographus (Coleoptera: Curculionidae) in the Vitosha National Park, Bulgaria. Journal of Forest Science 66(10): 420- 435. https://doi.org/10.17221/123/2020-JFSBiedermann P.H., Müller J., Grégoire J.C., Gruppe A., Hagge J., Hammerbacher A., Hofstetter W., Kandasamy D., Kolarik M., Kostovcik M., Krokene P., Sallé A., Six D.L, Turrini T., Vanderpool D., Wingfield M.J., Bässler C., 2019. Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends in Ecology & Evolution 34(10): 914-924. https://doi. org/10.1016/j.tree.2019.06.002Bisset J., Widden P., 1988. A new species of Beauveria isolated from Scottish moorland soil. Canadian Journal of Botany 66: 361-362.Bustamante D.E., Oliva M., Leiva S., Mendoza J.E., Bobadilla L., Angulo G., Calderon M.S., 2019. Phylogeny and species delimitations in the entomopathogenic genus Beauveria (Hypocreales, Ascomycota), including the description of B. peruviensis sp. nov. MycoKeys 58: 47-68. https://doi. org/10.3897/mycokeys.58.35764Cognato A.I., 2015. Biology, systematics, and evolution of Ips. In Vega F.E., Hofstetter R.W. (eds.), Bark beetles: biology and ecology of native and invasive species. Elsevier, San Diego, CA, pp. 351-370. https://doi. org/10.1016/B978-0-12-417156-5.00009-5Chen M.J., Huang B., Li Z.Z., Spatafora J.W., 2013. Morphological and genetic characterisation of Beauveria sinensis sp. nov. from China. Mycotaxon 124: 301-308. https://doi.org/10.5248/124.301Chen W.H., Han Y.F., Liang Z.Q., Jin D.C., 2017. A new araneogenous fungus in the genus Beauveria from Guizhou, China. Phytotaxa 302(1): 57-64. https://doi. org/10.11646/phytotaxa.302.1.5Chen W.H., Liu M., Huang Z.X., Yang G.M., Han Y.F., Liang J.D., Liang Z.Q., 2018. Beauveria majiangensis, a new entomopathogenic fungus from Guizhou, China. Phytotaxa 333(2): 243-250. https://doi.org/10.11646/ phytotaxa.333.2.8Chen Z.H., Chen K., Dai Y.D., Zheng Y., Wang Y.B., Yang X.N., Yu H., Yang Y.M., Xu, L., 2019. Beauveria species diversity in the Gaoligong Mountains of China. Mycological Progress 18(7): 933-943. https://doi. org/10.1007/s11557-019-01497-zDackman C., Nordbring-Hertz B., 1985. Fungal parasites of the cereal cyst nematode Heterodera avenae in Southern Sweden. Journal of Nematology 17(1): 50-55.Draganova S., Takov D., Doychev D., 2010. Naturally-occurring entomopathogenic fungi on three bark beetle species (Coleoptera: Curculionidae) in Bulgaria. Pesticides & Phytomedicine (Belgrade) 25(1): 59-63. https://doi.org/10.2298/PIF1001059DDinu M. M., Lupăştean D., Cardaş G., Andrei A. M., 2012. New Beauveria bassiana (Bals). Vuill. isolate from Ips duplicatus (Sahlberg). Romanian Journal of Plant Protection 5: 12-15.Edgar R.C., 2004. Muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research (32): 1792-1797. https://doi.org/10.1093/nar/ gkh340Falťan V., Bánovský M., Blažek M., 2011. Evaluation of land cover changes after extraordinary windstorm by using the land cover metrics: A case study on the High Tatras foothill. Geografie 116(2): 156-171. https://doi. org/10.37040/geografie2011116020156Ferenčík J., 2016. Lykožrút smrekový vo Vysokých Tatrách [European spruce bark beetle in Tatra Mts]. Holušová K. (ed), Karpatské lesy conference, 4-5 May 2016, Bunč. Forest Management Institute, Brandýs nad Labem, pp. 101-114.Fleischer P., Godzik B., Bicarova S., Bytnerowicz A., 2005. Effects of air pollution and climate change on forests of the Tatra Mountains, Central Europe. In Omasa K., Nouchi I., De Kok L.J. (eds.), Plant Responses to Air Pollution and Global Change. Springer, Tokyo, pp. 111- 121. https://doi.org/10.1007/4-431-31014-2_13Fleischer P. jr., Fleischer P., Ferenčík J., Hlaváč P., Kozánek M., 2016. Elevated bark temperature in unremoved stumps after disturbances facilitates multi-voltinism in Ips typographus population in a mountainous forest. Forestry Journal 62(1): 15-22. https://doi.org/10.1515/ forj-2016-0002Fora C.G., Banu C.M., Chisăliţă I., Moatăr M.M., Oltean I., 2014. Parasitoids and predators of Ips typographus (L.) in unmanaged and managed spruce forests in Natural Park Apuseni, Romania. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42(1): 270-274. https://doi.org/10.15835/nbha4219430Gams W., 1971. Cephalosporium-artige Schimmelpilze (Hyphomycetes). Gustav Fischer Verlag, Stuttgart, 262 p.Gams W., 1988. A contribution to the knowledge of nematophagous species of Verticillium. Netherlands Journal of Plant Pathology 94(3): 123-148.Glare T.R., Reay S.D., Nelson T.L., Moore R., 2008. Beauveria caledonica is a naturally occurring pathogen of forest beetles. Mycological Research 112(3): 352- 360. https://doi.org/10.1016/j.mycres.2007.10.015Grégoire, J. C., Evans, H. F., 2007. Damage and control of BAWBILT organisms an overview. In Lieutier, F. et al. (eds.), Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp. 19-37. https://doi.org/10.1007/978-1-4020-2241-8_4Grodzki W., McManus M., Knı́žek M., Meshkova V., Mihalciuc V., Novotny J., Turčáni M., Slobodyan Y., 2004. Occurrence of spruce bark beetles in forest stands at different levels of air pollution stress. Environmental Pollution 130(1): 73-83. https://doi.org/10.1016/j. envpol.2003.10.022Grodzki W., Turčáni M., Jakuš R., Hlásny T., Raši R., McManus M.L., 2010. Bark beetles in the Tatra Mountains. International research 1998-2005 - an overview. Folia Forestalia Polonica, Series A 52(2): 114-130. https://doi.org/10.5281/zenodo.30733Hilszczański J., Gibb H., Bystrowski C., 2007. Insect natural enemies of Ips typographus (L). (Coleoptera, Scolytinae) in managed and unmanaged stands of mixed lowland forest in Poland. Journal of Pest Science 80(2): 99-107. https://doi.org/10.1007/s10340-006-0160-7Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni, M. 2021. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490, 119075. https://doi.org/10.1016/j. foreco.2021.119075Humber R.A., 2012. Identification of entomopathogenic fungi. In Lacey L.A. (ed.), Manual of techniques in invertebrate pathology. Academic Press, Amsterdam, pp. 151-187.Jakoby O., Lischke H., Wermelinger B., 2019. Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus). Global Change Biology 25: 4048-4063. https://doi. org/10.1111/gcb.14766Kautz M., Dworschak K., Gruppe A., Schopf R., 2011. Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. Forest Ecology and Management 262(4): 598-608. https://doi.org/10.1016/j.foreco.2011.04.023Kepler R.M., Humber R.A., Bischoff J.F., Rehner S.A., 2014. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 106(4): 811-829. https://doi. org/10.3852/13-319Kepler R.M., Luangsa-ard J.J., Hywel-Jones N.L., Quandt C.A., Sung G.H., Rehner S.A., Aime M.C., Henkel T.W., Sanjuan T., Zare R., Chen M.J., Li Z.Z., Rossman A.Y., Spatafora J.W., Shrestha B., 2017. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8(2): 335-353. https://doi.org/10.5598/ imafungus.2017.08.02.08Khonsanit A., Luangsa-ard J.J., Thanakitpipattana D., Noisripoom W., Chaitika T., Kobmoo N., 2020. Cryptic diversity of the genus Beauveria with a new species from Thailand. Mycological Progress 19(4): 291-315. https://doi.org/10.1007/s11557-020-01557-9Kocaçevik S., Sevim A., Eroğlu M., Demirbağ Z., Demir I., 2016. Virulence and horizontal transmission of Beauveria pseudobassiana S.A. Rehner & Humber in Ips sexdentatus and Ips typographus (Coleoptera: Curculionidae). Turkish Journal of Agriculture and Forestry 40(2): 241-248. https://doi.org/10.3906/tar- 1504-64Knížek M., Beaver R., 2007. Taxonomy and systematics of bark and ambrosia beetles. In Lieutier F. et al. (eds.), Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp. 41-54. https://doi. org/10.1007/978-1-4020-2241-8_5Kreutz J., Vaupel O., Zimmermann G., 2004. Efficacy of Beauveria bassiana (Bals.) Vuill. against the spruce bark beetle, Ips typographus L., in the laboratory under various conditions. Journal of Applied Entomology 128(6): 384-389. https://doi.org/10.1111/j.1439- 0418.2004.00813.xKumar S., Stecher G., Li M., Knyaz C., Tamura K., 2018. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547-1549. https://doi.org/10.1093/ molbev/msy096Kunca A., Zúbrik M., 2006. Vetrová kalamita z 19. 11. 2004 [Wind calamity on November 19, 2004]. National Forest Centre, Zvolen, 40 p.Landa Z., Horňák P., Osborne L.S., Nováková A., Bursová E., 2001. Entomogenous fungi associated with spruce bark beetle Ips typographus L. (Coleoptera, Scolytidae) in the Bohemian Forest. Silva Gabreta 6: 259-272.Mann A.J., Davis T.S., 2021. Entomopathogenic fungi to control bark beetles: a review of ecological recommendations. Pest Management Science. https:// doi.org/10.1002/ps.6364.Medo J., Michalko J., Medová J., Cagáň Ľ., 2016. Phylogenetic structure and habitat associations of Beauveria species isolated from soils in Slovakia. Journal of Invertebrate Pathology 140: 46-50. https:// doi.org/10.1016/j.jip.2016.08.009Medo J., Medová J., Michalko J., Cagáň Ľ., 2021. Variability in virulence of Beauveria spp. soil isolates against Ostrinia nubilalis. Journal of Applied Entomology 145(1-2): 92-103. https://doi.org/10.1111/ jen.12806Meyling N.V., Lübeck M., Buckley E.P., Eilenberg J., Rehner S.A., 2009. Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Molecular Ecology 18(6): 1282-1293. https:// doi.org/10.1111/j.1365-294X.2009.04095.xMeyling N.V., Pilz C., Keller S., Widmer F., Enkerli J., 2012. Diversity of Beauveria spp. isolates from pollen beetles Meligethes aeneus in Switzerland. Journal of Invertebrate Pathology 109(1): 76-82. https://doi. org/10.1016/j.jip.2011.10.001Mudrončeková S., Mazán M., Nemcovic M., Salamon I., 2013. Entomopathogenic fungus species Beauveria bassiana (Bals.) and Metarhizium anisopliae (Metsch.) used as mycoinsecticide effective in biological control of Ips typographus (L.). The Journal of Microbiology, Biotechnology and Food Sciences 2(6): 2469-2472.Niedzwiedz T., 1992. Climate of the Tatra Mountains. Mountain Research and Development 12(2): 131-146.Nopp U., Führer E. 2000. Assessment of the predisposition of spruce-abundant forests to various disturbances. In Klimo E., Hager H., Kulhavý J. (eds.), Spruce Monocultures in Central Europe - Problems and Prospects. European Forest Institute, Joensuu, Finland, pp. 113-117.Økland B., Bjørnstad O.N., 2006. A resource-depletion model of forest insect outbreaks. Ecology 87(2): 283- 290. https://doi.org/10.1890/05-0135Økland B., Netherer S., Marini L., 2015. The Eurasian spruce bark beetle: The role of climate. In Björkman C., Niemelä P. (eds.), Climate change and insect pests. CABI, Wallingford, pp. 202-219. https://doi. org/10.1079/9781780643786.0202Økland B., Nikolov C., Krokene P., Vakula J., 2016. Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. Forest Ecology and Management 363: 63-73. https:// doi.org/10.1016/j.foreco.2015.12.007Rehner S.A., Buckley E.P., 2005. A Beauveria phylogeny inferred from ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97(1): 84-98. https://doi.org/1 0.1080/15572536.2006.11832842Rehner S.A., Posada F., Buckley E.P., Infante F., Castillo A., Vega F.E., 2006. Phylogenetic origins of African and Neotropical Beauveria bassiana s.l. pathogens of the coffee berry borer, Hypothenemus hampei. Journal of Invertebrate Pathology 93: 11-21. https://doi. org/10.1016/j.jip.2006.04.005Rehner S.A., Minnis A.M., Sung G.H., Luangsa-ard J.J., Devotto L., Humber R.A., 2011. Phylogeny and systematics of the anamorphic, entomopathogenic genus Beauveria. Mycologia 103: 1055-1073. https:// doi.org/10.3852/10-302Robène-Soustrade I., Jouen E., Pastou D., Payet-Hoarau M., Goble T., Linderme D., Lefeuvre P., Calmès C., Reynaud B., Nibouche S., Costet L., 2015. Description and phylogenetic placement of Beauveria hoplocheli sp. nov. used in the biological control of the sugarcane white grub, Hoplochelus marginalis, on Reunion Island. Mycologia 107: 1221-1232. https://doi.org/10.3852/14- 344Sanjuan T., Tabima J., Restrepo S., Læssøe T., Spatafora J.W., Franco-Molano A.E., 2014. Entomopathogens of Amazonian stick insects and locusts are members of the Beauveria species complex (Cordyceps sensu stricto). Mycologia 106(2): 260-275. https://doi. org/10.3852/106.2.260Schneider S., Rehner S.A., Widmer F., Enkerli J., 2011. A PCR-based tool for cultivation-independent detection and quantification of Metarhizium clade 1. Journal of Invertebrate Pathology 108(2): 106-114. https://doi. org/10.1016/j.jip.2011.07.005Seidl R., Müller J., Hothorn T., Bässler C., Heurich M., Kautz M., 2015. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. Journal of Applied Ecology 53(2): 530-540. https://doi.org/10.1111/1365- 2664.12540Stadelmann G., Bugmann H., Wermelinger B., Bigler C., 2014. Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. Forest Ecology and Management 318: 167-174. https://doi.org/10.1016/j.foreco.2014.01.022Takov D., Pilarska D., Wegensteiner R., 2006. Entomopathogens in Ips typographus (Coleoptera: Scolytidae) from several spruce stands in Bulgaria. Acta Zoologica Bulgarica 58(3): 409-420.Takov D., Doychev D., Wegensteiner R., Pilarska D., 2007. Study of bark beetle (Coleoptera, Scolytidae) pathogens from coniferous stands in Bulgaria. Acta Zoologica Bulgarica 59(1): 87-96.Takov D., Doychev D., Linde A., Draganova S., Pilarska D., 2012. Pathogens of bark beetles (Curculionidae: Scolytinae) and other beetles in Bulgaria. Biologia 67: 966-972. https://doi.org/10.2478/s11756-012-0086-xTamura K., Nei M., 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3): 512-526.Turčáni M., Hlásny, T., 2007. Spatial distribution of four spruce bark beetles in North-Western Slovakia. Journal of Forest Science 53: 45-52. https://doi. org/10.17221/2157-JFSVakula J., Gubka A., Galko J., Varkonda Š. 2012. Aplikácia entomopatogénov do populácii škodcov s využitím feromónových lapačov. [Application of entomopathogens to pest populations using pheromone traps]. In Kunca A. (ed.), Aktuálne problémy v ochrane lesa. National Forest Centre, Zvolen, pp. 92-96.Vakula J., Gubka A., Galko J., Kunca A., Zúbrik M., 2013. Podkôrny hmyz - pretrvávajúca hrozba smrečín Slovenska. Aké sú dôvody? [Bark beetles - the continuing threat of spruce forests of Slovakia. What are the reasons?] Les a Letokruhy 7-8: 38-39.Vega F.E., Meyling N.V., Luangsa-Ard J.J., Blackwell M., 2012. Chapter 6 - Fungal Entomopathogens. In Vega F.E., Kaya H.K. (eds.), Insect Pathology. Academic Press, San Diego, pp. 171-220. https://doi.org/10.1016/ B978-0-12-384984-7.00006-3Wegensteiner R., 2007. Pathogens in bark beetles. In Lieutier F., Day K.R., Battisti A., Grégoire J.C., Evans H.F. (eds), Bark and wood boring insects in living trees in Europe, a synthesis. Springer, Dordrecht, pp. 291- 313. https://doi.org/10.1007/978-1-4020-2241-8_12Wegensteiner R., Dedryver C.A., Pierre J.S., 2010. The comparative prevalence and demographic impact of two pathogens in swarming Ips typographus adults: a quantitative analysis of long term trapping data. Agricultural and Forest Entomology 12(1): 49-57. https://doi.org/10.1111/j.1461-9563.2009.00449.xWegensteiner R., Tkaczuk C., Bałazy S., Griesser S., Rouffaud M.A., Stradner A., Steinwender B.M., Hager H., Papierok B., 2015a. Occurrence of pathogens in populations of Ips typographus, Ips sexdentatus (Coleoptera, Curculionidae, Scolytinae) and Hylobius spp. (Coleoptera, Curculionidae, Curculioninae) from Austria, Poland and France. Acta Protozoologica 54(3): 219-232. https://doi.org/10.4467/16890027 AP.15.018.3215Wegensteiner R., Wermelinger B., Herrmann M., 2015b. Natural enemies of bark beetles: predators, parasitoids, pathogens, and nematodes. In Vega F.E., Hofstetter R.W. (eds.), Bark beetles - biology and ecology of native and invasive species. Academic press, London, pp. 247-304. https://doi.org/10.1016/B978-0-12- 417156-5.00007-1Wermelinger B., 2004. Ecology and management of the spruce bark beetle Ips typographus - a review of recent research. Forest ecology and management 202(1-3): 67- 82. https://doi.org/10.1016/j.foreco.2004.07.018White T.J., Bruns T., Lee S., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., (eds.), PCR Protocols: A guide to methods and applications. Academic Press, pp. 315- 322.Zare R., Gams W., Evans H.C., 2001. A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia 73(1-2): 51-86. https://doi.org/10.1127/nova. hedwigia/73/2001/51Zhang S.L., He L.M., Chen X., Huang B., 2012. Beauveria lii sp. nov. isolated from Henosepilachna vigintioctopunctata. Mycotaxon 121(1): 199-206. https://doi.org/10.5248/121.199Zimmermann G., 2007. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology 17(6): 553-596. https://doi. org/10.1080/09583150701309006






Research article