Establishing a baseline to monitor future climate-change-effects on peripheral populations of Abies alba in central Apennines

Authors

  • Fulvio Ducci Council for Agricultural Research and Agricultural Economy Analysis (CREA), Forestry and wood research centre
  • Anna De Rogatis Council for Agricultural Research and Agricultural Economy Analysis (CREA), Research Centre for Agriculture and Environment
  • Roberta Proietti Council for Agricultural Research and Agricultural Economy Analysis (CREA), Foretry and wood research centre
  • Alexandru Lucian Curtu Transilvania University of Brasov Department of Silviculture
  • Maurizio Marchi CNR - Institute of Biosciences and BioResources
  • Piero Belletti University of Turin DI.S.A.F.A. Plant Genetics and Breeding

DOI:

https://doi.org/10.15287/afr.2021.2281

Keywords:

Abies alba, silver fir, genetic diversity, cambial phenology, marginal, peripheral populations, Apennines, Isotherm shift

Abstract

Understanding tree species responses to climate change is crucial for preserving biodiversity especially in Southern Europe hot spots where Abies alba is widely spread. Three Apennine silver fir populations, Pigelleto (PIG), La Verna (LV) and Bocca Trabaria (BT), ensured gene flows in interglacial periods between the two phylogenetically different groups of northern and southern Apennines. These stands were analysed (nuclear and chloroplast SSRs) with the aim to establish a baseline for their future management in view of the expected changes. The three forests were tested for the Centre-Periphery Hypothesis (CPH) compared to forty-five Italian populations. At the same time, permanent areas were surveyed within LV and PIG on dominant (a) and dominated or natural regeneration (r) tree layers, and on age classes. In two consecutive years, spring cambial phenology activity was also weekly monitored on microcores, and critical phenology dates recorded. The stands matched CPH only partially, showing different phylogenetic history and their bridging between northern and southern groups of silver fir populations was confirmed. LV was distinct from PIG and BT. The within-population variance component was significantly high, and no narrow relatedness was observed between dominant and dominated/regeneration spatially closer trees, and genetic parameters were comparable in both layers at LV and PIG. In both stands, older age classes ensured natural regeneration. Cambium phenology was highly variable within populations, consistently to other Mediterranean conifers, and highly sensitive to local and year’s conditions and monitoring will improve population’s adaptive capacity detection. Shelterwood-system silvicultural treatments are suggested on small areas to drive the demographic and panmictic balance towards an uneven-aged more resilient structure, and iterated monitoring will help to adapt the forest management to the isotherm shift.

References

Aitken S.N., Yeaman S., Holliday J.A., Wang T., Curtis‐McLane S., 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1: 95-111. https://doi.org/10.1111/j.1752-4571.2007.00013.xAlberto F.J., Aitken S.N., Alía R, González-Martínez S.C., Hänninen H., et al., 2013. Potential for evolutionary responses to climate change - evidence from tree populations. Glob Chang Biol 19(6): 1645-61. https://doi.org/10.1111/gcb.12181Andersen J.R., Luebberstedt T., 2003. Functional markers in plants. Trends Plant Sci 8(11): 554-560. https://doi.org/.10.1016/j.tplants.2003.09.010Antonucci S., Rossi S., Deslauriers A., Lombardi F., Marchetti M., Tognetti R., 2015. Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. Tree Physiol 35(10): 1086-1094. https://doi.org/10.1093/treephys/tpv077Antonucci S., Rossi S., Lombardi F., Marchetti M., Tognetti R., 2019. Influence of climatic factors on silver fir xylogenesis along the Italian Peninsula. IAWA journal / International Association of Wood Anatomists: 1: 17. https://doi: 10.1163/22941932-40190222Aravanopoulos F.A., 2011. Genetic monitoring in natural perennial plant populations. Botany 89(2): 75–81. https://doi.org/10.1139/b10-087Aravanopoulos F.A., 2016. Conservation and monitoring of tree genetic resources in temperate forests. Curr Forestry Rep 2: 119-129. https://doi.org/10.1007/s40725-016-0038-8Aravanopoulos F.A., 2018. Do silviculture and forest management affect the genetic diversity and structure of long-impacted forest tree populations? Forests 9(6): 355. https://doi.org/10.3390/f9060355Aravanopoulos F.A, Tollefsrud M.M., Graudal L., Koskela J., Kätzel R., et al., 2015. Development of genetic monitoring methods for genetic conservation units of forest trees in Europe. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, Rome, Italy. xvi+46 p.Arnaud‐Haond S., Teixeira S., Massa S.I., Billot C., Saenger P., et al., 2006. Genetic structure at range edge: low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations. Molecular Ecology 15: 3515-3525. https://doi.org/10.1111/j.1365-294X.2006.02997.xBabst F., Poulter B., Trouet V., Tan K., Neuwirth B., et al., 2013. Climate sensitivity of forest growth across Europe. Global Ecology and Biogeography 22: 706-717. https://doi.org/10.1111/geb.12023Bagnoli F., Fady B., Fineschi S., Muratorio-Oddu S., Piotti A., et al., 2011. Neutral patterns of genetic variation and applications to conservation in Conifer species. In: Plomion C., Bousquet J., Kole C. (eds). Genetics, Genomics and Breeding of Conifers, CRC Press, NW (US), pp. 141-195.Basler D., Körner C., 2012. Photoperiod sensitivity of bud burst in 14 temperate forest tree species. Agricultural and Forest Meteorology 165: 73-81. http://dx.doi.org/10.1016/j.agrformet.2012.06.001Battipaglia G., Saurer M., Cherubini P., Siegwolf R.T.W., Cotrufo M.F., 2009. Tree rings indicate different drought resistance of a native (Abies alba Mill.) and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Forest Ecol. Manag. 257(3): 820–828. https://doi.org/10.1016/j.foreco.2008.10.015Belletti P., Ferrazzini D., Ducci F., De Rogatis A., Mucciarelli M., 2017. Genetic diversity of Italian populations of Abies alba. Dendrobiology 77(17): 147-159. http://dx.doi.org/10.12657/denbio.077.012Bergmann F., Gregorius H.R., 1992. Ecogeographical distribution and thermal stability of Isocitrate dehydrogenase (IDH) alloenzymes in European silver Fir (Abies alba). Biochem. Syst. Ecol. 21: 597-605.Bernetti G., 1995. Selvicoltura speciale. Ed. UTET, Torino, Italia, pp. 107-123.Bigler C., Gricar J., Bugmann H., Cufar K., 2004. Growth patterns as indicators of impending tree death in silver fir. Forest Ecology and Management 199: 183–190. https://doi.org/10.1016/j.foreco.2004.04.019Blasi C., Capotorti G., Copiz R., Mollo B., 2018. A first revision of the Italian Ecoregion map, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 152, 6: 1201-1204, https://doi.org/10.1080/11263504.2018.1492996 Bosela M., Popa I., Gömöry D., Longauer R., Tobin B., et al., 2016. Effects of post‐glacial phylogeny and genetic diversity on the growth variability and climate sensitivity of European silver fir. J. Ecol 104: 716-724. https://doi.org/10.1111/1365-2745.12561Bottalico F., Travaglini D., Fiorentini S.L.C., Nocentini S., 2014. Stand dynamics and natural regeneration in silver fir (Abies alba Mill.) plantations after traditional rotation age. iForest. 7(5): 313-323. https://doi.org/10.3832/ifor0985-007Camarero J.J., Olano J.M., Parras A., 2010. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytologist 185: 471-480. https://doi.org/10.1111/j.1469-8137.2009.03073.xCarrer M., Nola P., Motta R., Urbinati C., 2010. Contrasting tree-ring growth to climate responses of Abies alba toward the southern limit of its distribution area. Oikos 119: 1515–1525. https://doi: 10.1111/j.1600-0706.2010.18293.xCherubini P., Gartner B.L., Tognetti R., Braker O.U., Schoch W., Innes J.L., 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biol. Rev. 78(1): 119–148. https://doi.org/10.1017/S1464793102006000Chuine I., Beaubien E.G., 2001. Phenology is a major determinant of tree species range. Ecology Letters 4(5): 500-510. https://doi.org/10.1046/j.1461-0248.2001.00261.xChybicki I., Burczyk J., 2009. Simultaneous estimation of null alleles and inbreeding coefficients. J. Hered. 100(1): 106–112. https://doi.org/10.1093/jhered/esn088Clark J.S., Salk C., Melillo J., Mohan J., 2014. Tree phenology responses to winter chilling, spring warming, at north and south range limits. Funct. Ecol. 2(6): 1344-1355. https://doi.org/10.1111/1365-2435.12309Cocozza C., Palombo C., Tognetti R., La Porta N., Anichini M., et al., 2016. Monitoring intra-annual dynamics of wood formation with microcores and dendrometers in Picea abies at two different altitudes. Tree Physiology 36(7): 832–846. http://hdl.handle.net/10449/37366Cremer E., Liepelt S., Sebastiano F., Buonamici A., Ziegenhagen I.M.B., Vendramin G.G., 2006. Identification and characterization of nuclear microsatellite loci in Abies alba Mill. Mol. Ecol. Notes 6: 374–376. https://doi.org/10.1111/j.1471-8286.2005.01238.xCsilléry K., Buchmann N.,. Fady B., 2020a. Adaptation to drought is coupled with slow growth, but independent from phenology in marginal silver fir (Abies alba Mill.) populations. Evol. Appl. 13: 2357–2376. https://doi. org/10.1111/eva.13029Csilléry K., Ovaskainen O., Sperisen C., Buchmann N., Widmer A., Gugerli F., 2020b. Adaptation to local climate in multi-trait space: evidence from silver fir (Abies alba Mill.) populations across a heterogeneous environment. Heredity 124: 77–92. https://doi.org/10.1038/s41437-019-0240-0Cuny H.E., Rathgeber C.B.K., Lebourgeois F., Fortin M., Fournier M., 2012. Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol. 32(5): 612–625. https://doi.org/10.1093/treephys/tps039Cuny H.E., Fonti P., Rathgeber C.B.K., Arx G., Peters R.L., Frank D.C., 2019. Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant Cell Environ. 42(4): 1222–1232. https://doi.org/10.1111/pce.13464Denny E.G., Gerst K.L., Miller-Rushing A.J., Tierney G.L., Crimmins T.M., et al., 2014. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications Int J Biometeorol 58: 591-601. https://doi.org/10.1007/s00484-014-0789-5Delpierre N., Lireux S., Hartig F., Camarero J.J., Cheaib A., et al., 2019. Chilling and forcing temperatures interact to predict the onset of wood formation in Northern Hemisphere conifers. Glob. Change Biol.: 1–17. https://doi.org/10.1111/gcb.14539Desiato F., Fioravanti G., Fraschetti P., Perconti W., Piervitali E., Pavan V., 2013. Indicatori climatici in Italia. Anno VIII. [Climate indicators in Italy in 2012. Year VIII]. ISPRA, Stato dell’Ambiente, 36: 74 p.Deslauriers A., Morin H., Begin Y., 2003. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. Forest Res. 33(2): 190–200. https://doi.org/10.1139/x02-178Deslauriers A., Rossi S., Anfodillo T., Saracino A., 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiol. 28(6): 863–871. https://doi.org/10.1093/treephys/28.6.863Diniz-Filho J.A.F., Soares T.N., Lima J.S., Dobrovolski R., Landeiro V.L., Pires de Campos Telles M., Rangel T.F., Bini L.M., 2013. Mantel test in population genetics. Genetics and Molecular Biology 36(4): 475-485. http://dx.doi.org/10.1590/S1415-47572013000400002Ducci F., Proietti R., Favre J.M., 1998. The genus Abies in Italy: general ecology, silvicultural management, and genetic resources. [Le genre Abies en Italie: écologie générale, gestion sylvicole et ressources génétiques].Forêt Méditerranéenne 19: 153–164. http://hdl.handle.net/2042/40868Ducci F., De Cuyper B., Pâques L. E., Proietti R., Wolf H. (Ed.), 2012. Reference protocols for assessment of traits and reference genotypes to be used as standards in international research projects. [TreeBreedex EU Project] Ed. CRA SEL – Arezzo, Italy: 82 p. Earl D.A., Von Holdt B.M., 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359-361. http://dx.doi.org/10.1007/s12686-011-9548-7Eckert C.G., Samis K.E., Lougheed S.C., 2008. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol. Ecol., 17(5): 1170-1188. https://doi.org/10.1111/j.1365-294X.2007.03659.xExcoffier L., Smouse P.E., Quattro J.M.,1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131: 479-491.Excoffier L., Lischer H.E.L., 2010. Arlequin suite v. 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.xEvanno G., Regnaut S., Goudet J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8): 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.xFady B., Aravanopoulos F.A., Alizoti P., Mátyás C., von Wühlisch G., et al., 2016. Evolution-based approach needed for the conservation and silviculture of peripheral forest tree populations. Forest Ecol. Manag. 375: 66–75. https://doi.org/10.1016/j.foreco.2016.05.015FAO, 2014. Global Plan of Action for the Conservation, Sustainable Use and Development of Forest Genetic Resources. FAO - Commission on Genetic Resources for Food and Agriculture, Rome: 31 p. ISBN 978-92-5-108422-9Fernández-de-Uña L., Aranda I., Rossi S., Fonti P., Cañellas I., Gea-Izquierdo G., 2018. Divergent phenological and leaf gas exchange strategies of two competing tree species drive contrasting responses to drought at their altitudinal boundary. Tree Physiology 38(8):1 152-1165. https://doi.org/10.1093/treephys/tpy041Fonti P., Jansen S., 2012. Xylem plasticity in response to climate. New Phytologist 195: 734-736. https://doi.org/10.1111/j.1469-8137.2012.04252.xFonti P., von Arx G., García-González I., Eilmann B., Sass-Klaassen U., et al., 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53. https://doi.org/10.1111/j.1469-8137.2009.03030.xFrejaville T., Fady B., Kremer A., Ducousso A., Benito Garzon M., 2019. Inferring phenotypic plasticity and local adaptation to climate across tree species ranges using forest inventory data. bioRxiv 527390. https://doi.org/10.1101/527390Friedl M.A., Gray J.M., Melaas E.K., Richardson A.D., Hufkens K., Keenan T..F, et al., 2014. A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environ Res Lett 9(5): 1-9. https://doi.org/10.1088/1748-9326/9/5/054006Fussi B., Westergren M., Aravanopoulos F., Baier R., Kavaliauskas D., et al., 2016. Forest genetic monitoring: an overview of concepts and definitions. Environmental Monitoring and Assessment, 188(8): 493. https://doi.org/10.1007/s10661-016-5489-7Gallucci V., Urbinati C., 2009. Dinamismi di accrescimento e sensività climatica dell’abete bianco (Abies alba Mill.) nel SIC Alpe della Luna-Bocca Trabaria (PU). [Growth dynamics and climatic sensitivity of Silver fir (Abies alba Mill.) in the European important site (SIC) at the Alpe della Luna - Bocca Trabaria (PU - Italy)]. Forest@ 6:85–99. https://doi.org/10.3832/efor0564-006Garate-Escamilla H.A., Brelsford C.C., Hampe A., Robson T.M., Garzon M.B., 2020. Greater capacity to exploit warming temperatures in northern populations of European beech is partly driven by delayed leaf senescence. Agricultural and Forest Meteorology 284:1-10. https://doi.org/10.1016/j.agrformet.2020.107908Gärtner H., Schweingruber F.H., 2013. Microscopic preparation techniques for plant stem analysis. Verlag Dr. Kessel, Remagen: 78 p.Gärtner H., Lucchinetti S., Schweingruber F.H., 2014. New perspectives for wood anatomical analysis in dendrosciences: The GSL1-microtome. Dendrochronologia 32(1): 47-51. https://doi.org/10.1016/j.dendro.2013.07.002Gazol A., Camarero J.J., Gutiérrez E., Popa I., Andreu-Hayles L., et al., 2015. Distinct effects of climate warming on populations of silver fir (Abies alba) across Europe. J. Biogeogr. 42: 1150–1162. https://doi.org/10.1111/jbi.12512George J.P., Schueler S., Karanitsch-Ackerl S., Mayer K., Klumpp R.T., Grabner M., 2015. Inter- and intra-specific variation in drought sensitivity in Abies spec. and its relation to wood density and growth traits. Agr. Forest Meteorol. 214-215: 430-443. https://doi.org/10.1016/j.agrformet.2015.08.268Gewehr S., Drobyshev I., Berninger F., Bergeron Y., 2014. Soil characteristics mediate the distribution and response of boreal trees to climatic variability. Can. J. For. Res. 44(5): 487–498. https://doi.org/10.1139/cjfr-2013-0481Giagli K., Gričar J., Vavrčík H., Gryc V., 2016. Nine-year monitoring of cambial seasonality and cell production in Norway spruce. iForest 9: 375-382. https://doi.org/10.3832/ifor1771-008Gömöry D., Paule L., Krajmerová D., Romšáková I., Longauer R., 2012. Admixture of genetic lineages of different glacial origin: a case study of Abies alba Mill. in the Carpathians. Plant Systematics and Evolution 298(4): 703-712. https://www.jstor.org/stable/43496782Gordo O., Sanz J.J., 2010. Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology 16: 1082-1106. https://doi.org/10.1111/j.1365-2486.2009.02084.xGoudet J., 2002. FSTAT (v.2.9.3.2): a computer program to calculate Fstatistics. http://www2.unil.ch/popgen.softwares.fstat.htmGüney A., Kerr D., Sökücü A., Zimmermann R., Küppers M., 2015. Cambial activity and xylogenesis in stems of Cedrus libani A. Rich at different altitudes. Botanical Studies 56(1): 20. https://doi.org/10.1186/s40529-015-0100-zHammer Ø., Harper D.A.T., 2006. Paleontological Data Analysis. Hammer Ø. and Harper D.A.T. (Eds): pp. 351. https://doi.org/10.1002/9780470750711.fmatterHammer Ø., Harper D.A.T., Ryan P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.Hampe A., Petit R.J., 2005. Conserving biodiversity under climate change: the rear edge matters. Ecology Letters 8: 461-467. https://doi.org/10.1111/j.1461-0248.2005.00739.xHansen J.K., Larsen J.B., 2004. European silver fir (Abies alba Mill.) provenances from Calabria, southern Italy: 15-year results from Danish provenance field trials. European Journal of Forest Research 123(2): 127–138. https://doi.org/10.1007/s10342-004-0031-9Hänninen H., Tanino K., 2011. Tree seasonality in a warming climate. Trends in Plant Science 16(8): 412-416. https://doi.org/10.1016/j.tplants.2011.05.001Heer K., Behringer D., Piermattei A., Bässler C., Brandl R., et al., 2018. Linking dendroecology and association genetics in natural populations: Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Molecular Ecology 27(6): 1428-1438. https://do.i.org/10.1111/mec.14538Heide O.M., 1974. Growth and dormancy in Norway spruce ecotypes (Picea abies). I. Interaction of photoperiod and temperature. Physiol Plant 30: 1–12.Housset J.M., Carcaillet C., Girardin M.P., Xu H., Tremblay F., Bergeron Y., 2016. In situ comparison of tree-ring responses to climate and population genetics: The need to control for local climate and site variables. Front. Ecol. Evol. 4: 123. https://doi.org/10.3389/fevo.2016.00123IPCC, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer O., Pichs-Madruga R., Sokona Y., et al., (Eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Jakobsson M., Rosenberg N.A., 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14): 1801–1806. https://doi.org/10.1093/bioinformatics/btm233Kavaliauskas D., Fussi B., Westergren M., Aravanopoulos F.A., Finzgar D., et al., 2018. The Interplay between Forest Management Practices, Genetic Monitoring, and Other Long-Term Monitoring Systems. Forests 9, no. 3: 133. https://doi.org/10.3390/f9030133Kavaliauskas D., Fussi B., Dalibor B., Westergren M., Alizoti P., et al., 2020. Guidelines for genetic monitoring of silver fir (Abies alba Mill.) and King Boris fir (Abies borisii-regis Mattf.). In: Bajc M., Aravanopoulos F.A., Westergren M., Fussi B., Kavaliauskas D., et al., 2020. Manual for Forest Genetic Monitoring: 163–178. https://doi.org/10.29315/SFS.167 Kerr G., Stokes V., Peace A., Jinks R., 2015. Effects of provenance on the survival, growth and stem form of European silver fir (Abies alba Mill.) in Britain. Eur. J. Forest Res. 134: 349–363. https://doi.org/10.1007/s10342-014-0856-9Konnert M., Bergman F., 1995. The geographical distribution of genetic variation of silver fir (Abies alba, Pinaceae) in relation to its migration history. Plant Systematics and Evolution 196(1-2): 19-30. https://doi:10.1007/BF00985333Konnert M., Maurer W., Degen B., Kätzel R., 2011 Genetic monitoring in forests - early warning and controlling system for ecosystemic changes. iForest 4(2): 77-81. https://doi.org/10.3832/ifor0571-004Koskela J., Lefèvre F., Schueler S., Kraigher H., Olrik D.C., et al., 2013. Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity. Biological Conservation 157: 39-49. https://doi.org/10.1016/j.biocon.2012.07.023Kramer K., Leinonen I., Loustau D., 2000. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44(2): 67–75. https://doi.org/10.1007/s004840000066Kraus K., Zang C., Menzel A., 2016. Elevational response in leaf and xylem phenology reveals different prolongation of growing period of common beech and Norway spruce under warming conditions in the Bavarian Alps. Eur. J. Forest Res. 135: 1011-1023. https://doi.org/10.1007/s10342-016-0990-7Kremer A., Ronce O., Robledo-Arnuncio J.J., Guillaume F., Bohrer G., et al., 2012. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15(4): 378-392. https://doi.org/10.1111/j.1461-0248.2012.01746.xLarsen J.B., Mekic F., 1991. The geographic variation in European Silver Fir (Abies alba Mill.). Silvae Genetica, 40: 188-198.Laikre F., Allendorf F.W., LC Aroner L.C., Baker C.S., Gregovich D.P., et al., 2009. Neglect of genetic diversity in implementation of the Convention on Biological Diversity. Conservation Biology 24(1): 86–88. httpsHYPERLINK "https://doi.org/10.1111/j.1523-1739.2009.01425.x"://doi.org/10.1111/j.1523-1739.2009.01425.xLebourgeois F., Merian P., Courdier F., Ladier J., Dreyfus P., 2012. Instability of climate signal in tree-ring width in Mediterranean mountains: a multi-species analysis. Trees 26(3): 715-729. https://doi.org/10.1007/s00468-011-0638-7Lefèvre F., 2004. Human impacts on forest genetic resources in the temperate zone: an updated review. Forest Ecol. Manag. 197: 257-271.Lefèvre F., Koskela J., Hubert J., Kraigher H., Longauer R., et al., 2013. Dynamic conservation of forest genetic resources in 33 European countries. Conservation Biology 27(2): 373–384. https://doi.org/10.1111/j.1523-1739.2012.01961.xLeonarduzzi C., Piotti A., Spanu I., Vendramin G.G., 2016. Effective gene flow in a historically fragmented area at the southern edge of Silver fir (Abies alba Mill.) distribution. Tree Genet. Genomes 12: 1-14. https://doi.org/10.1007/s11295-016-1053-4Lesica P., Allendorf F.W., 1995. When are peripheral populations valuable for conservation? Conserv. Biol. 9(4): 753-760. https://doi.org/10.1046/j.1523-1739.1995.09040753.xLiepelt S., Cheddadi R., de Beaulieu J.-L., Fady B., Gömöry D., et al., 2009. Postglacial range expansion and its genetic imprints in Abies alba (Mill.) - a synthesis from palaeobotanic and genetic data. Review of Palaeobotany and Palynology 153(1-2): 139-149. https://doi.org/10.1016/j.revpalbo.2008.07.007Linares J.C., 2011. Biogeography and evolution of Abies (Pinaceae) in the Mediterranean Basin: the roles of long‐term climatic change and glacial refugia. Journal of Biogeography 38(4): 619–630. https://doi.org/10.1111/j.1365-2699.2010.02458.xLindner M., Maroschek M., Netherer S., Kremer A., Barbati A., et al., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manag. 259: 698-709. https://doi.org/10.1016/j.foreco.2009.09.023Longauer R., Paule L., Andonoski A., 2003. Genetic diversity of southern populations of Abies alba Mill. International Journal of Forest Genetics 10(10): 1-10.Magri D., Vendramin G.G., Comps B., Dupanloup I., Geburek T., et al., 2006. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence and genetic consequences. New Phytol. 171(1): 199-221. https://doi.org/10.1111/j.1469-8137.2006.01740.xManetti M.C., Castaldi C., Marchi M., Mazza G., 2014. Structural characterization of the project’s sites. In: Miozzo M., Ducci F., Montini P.G. (Eds.) Regeneration of predominantly beech woods with Abies alba (silver fir) in the Apennine mountains of the Tuscan and Marche regions. D.R.E.AM., Italy, pp. 57-62 [in Italian].Marchi M., Ducci F., 2018. Some refinements on species distribution models using tree-level National Forest Inventories for supporting forest management and marginal forest population detection. iForest, 11: 291-299. https://doi.org/10.3832/ifor2441-011Martinez-Meier A., Sanchez .L, Dalla Salda G., Gallo L., Pastorino M., Rozenberg P., 2009. Ring density record of phenotypic plasticity and adaptation to drought in Douglas-fir. Forest Ecology and Management, 258(5): 860-867. https://doi.org/10.1016/j.foreco.2009.03.021Mazza G., Gallucci V., Manetti M.C., Urbinati C., 2014. Climate–growth relationships of silver fir (Abies alba Mill.) in marginal populations of Central Italy. Dendrochronologia, 32(3): 181-190. https://doi.org/10.1016/j.dendro.2014.04.004Miozzo M, Ducci F., Montini P.G., (Eds.), 2014. Ricostituzione di boschi a dominanza di Faggio con Abies alba nell’Appennino Tosco – Marchigiano. [Regeneration of predominantly beech woods with Abies alba (silver fir) in the Apennine mountains of the Tuscan and Marche regions]. D.R.E.AM., Italy: pp. 151.Myking T., Heide O.M., 1995. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens. Tree Physiology 15(11): 697–704. https://doi.org/10.1093/treephys/15.11.697Nielsen C.N., Jørgensen F.V., 2003. Phenology and diameter increment in seedlings of European beech (Fagus sylvatica L.) as affected by different soil water contents: variation between and within provenances. Forest Ecol. Manag. 174(1-3): 233-249. https://doi.org/10.1016/S0378-1127(02)00042-7Oribe Y., Funada R., Shibagaki M., Kubo T., 2001. Cambial reactivation in locally heated stems of the evergreen conifer Abies sachalinensis (Schmidt) Masters. Planta 212: 684-691. https://doi.org/10.1007/s004250000430Pâques L.E., Chesnoiu E., Kowalczyk J., Rzonca M., Guyon D., et al., 2016. Alternative methodologies for phenology assessment in forest trees. Designing_Trees_for_the_Future_Alternative_methodologies_for_phenology_assessment_in_foresttrees Trees4Tuture Final Conference, Brussels, April 4th-6th 2016: pp. 24. https://www.researchgate.net/publication/336917501_TREES4FUTURE Peakall R., Smouse P.E., 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28(19): 2537-2539. https://doi.org/10.1093/bioinformatics/bts460Perrin H., 1954. Sylviculture (tome II). Le traitement des Forêts, Théorie e Pratique des Techniques Sylvicoles. Ed. ENEF, Nancy, France: 150-162.Petit R.J., El Mousadik A., Pons O., 1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology 12(4): 844-855. https://doi.org/10.1111/j.1523-1739.1998.96489.xPetit R.J., Aguinagalde I., de Beaulieu J.L., Bittkau C., Brewer S., et al., 2003. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300(5625): 1563-1565. https://doi.org/ 10.1126/science.1083264Pfister C., Brazdil R., 1999. Climatic variability in sixteenth century Europe and its social dimension: A synthesis. Climatic Change 43: 5-53. https://doi.org/10.1023/A:1005585931899Pletsers A., Caffarra A., Kelleher C.T., Donnelly A., 2015. Chilling temperature and photoperiod influence the timing of bud burst in juvenile Betula pubescens Ehrh. And Populus tremula L. trees. Annals of Forest Science 72: 941–953. https://doi.org/10.1007/s13595-015-0491-8Pinosio S., González‐Martínez S.C., Bagnoli F., Cattonaro F., Grivet D., et al., 2014. First insights into the transcriptome and development of new genomic tools of a widespread circum‐Mediterranean tree species, Pinus halepensis Mill. Mol. Ecol. Resour. 14: 846-856. https://doi.org/10.1111/1755-0998.12232Piotti A., Leonarduzzi C., Postolache D., Bagnoli F., Spanu I., et al., 2017. Unexpected scenarios from Mediterranean refugial areas: disentangling complex demographic dynamics along the Apennine distribution of Silver fir. J. Biogeogr. 44(7):1 547-1558 https://doi.org/10.1111/jbi.13011Piovani P., Leonardi S., Piotti A., Menozzi P., 2010. Conservation genetics of small relic populations of silver fir (Abies alba Mill.) in Northern Apennines. Plant Biosystems 144(3): 683-691. https://doi.org/10.1080/11263504.2010.496199Pironon S., Villellas J., Morris W.F., Doak D.F., García M.B., 2014. The ‘centre–periphery hypothesis’: new perspectives. Global Ecology and Biogeography 24: 611-620. https://doi.org/HYPERLINK "https://doi.org/10.1111/geb.12263"10.1111/geb.12263Poczai P., Varga I., Laos M., Cseh A., Bell N., et al., 2013. Advances in plant gene-targeted and functional markers: a review. Plant Methods 9(1): 6. https://doi.org/10.1186/1746-4811-9-6Popović V., Lučić A., Rakonjac L., Cvjetković B., Mladenović Drinić S., Ristić D., 2017. Assessment of genetic diversity of silver fir (Abies alba Mill.) in Serbia using SSR markers. Genetika 49(3): 979-988. https://doi.org/10.2298/GENSR1703979PPrimack R.B., Laube J., Gallinat A.S., Menzel A., 2015. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs. Ann. Bot. 116(6): 889-897. https://doi.org/10.1093/aob/mcv032Pritchard J.K., Wen X., Falush D., 2010. Documentation for STRUCTURE software. Available with the program at http://pritch.bsd.uchicago.edu/structure.htmR Core Team, 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, URL https://www.R-prpject.org/Rathgeber C.B.K., Cuny H.E., Fonti P., 2016. Biological Basis of Tree-Ring Formation: A Crash Course. Front. Plant Sci. 7: 734. https://doi.org/10.3389/fpls.2016.00734Rathgeber C.B.K., Longuetaud F., Mothe F., Cuny H.E., Le Moguedec G., 2011a. Phenology of wood formation: data processing, analysis and visualisation using R (package CAVIAR). Dendrochronologia 29(3): 139-149. https://doi.org/10.1016/j.dendro.2011.01.004Rathgeber C.B.K., Rossi S., Bontemps J-D., 2011b. Cambial activity related to tree size in a mature silver-fir plantation. Annals of Botany 108(3): 429–438. httpsHYPERLINK "https://doi.org/10.1093/aob/mcr168":HYPERLINK "https://doi.org/10.1093/aob/mcr168"//doi.org/101093/aob/mcr168Rathgeber C.B.K., Santenoise P., Cuny H.E., 2018. CAVIAR: a R package for checking, displaying and processing wood-formation-monitoring data. Tree Physiol. 38(8): 1246-1260. https://doi.org/10.1093/treephys/tpy054Ren P., Rossi S., Camarero J.J., Ellison A.M., Liang E., Peñuelas J., 2018. Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. Annals of Botany 121: 617–624. https://doi.org/10.1093/aob/mcx188Rosenberg N.A., 2004. DISTRUCT: a program for the graphical display of population structure. Mol. Ecol. 4: 137-138. https://doi.org/10.1046/j.1471-8286.2003.00566.xRossi S., Deslauriers A., Morin H., 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21(1): 33-39. https://doi.org/10.1078/1125-7865-00034Rossi S., Anfodillo T., Menardi R., 2006a. Trephor: a new tool for sampling microcores from tree stems. IAWA Journal 27(1): 89-97. https://doi.org/10.1163/22941932-90000139Rossi S., Deslauriers A., Anfodillo T., 2006b. Assessment of cambial activity and xylogenesis by microsampling tree species: an example at the alpine timberline. IAWA Journal 27(4): 383-394. https://doi.org/10.1163/22941932-90000161Rossi S., Deslauriers A., Anfodillo T., Carraro V., 2007. Evidence of threshold temperatures for xylo-genesis in conifers at high altitudes. Oecologia 152: 1-12. https://doi.org/10.1007/s00442-006-0625-7Rossi S., Deslauriers A., Anfodillo T., Carrer M., 2008a. Age-dependent xylogenesis in timberline conifers. New Phytologist 177(1): 199-208. https://doi.org/10.1111/j.1469-8137.2007.02235.xRossi S., Deslauriers A., Gricar J., Seo J.W., Rathgeber C.B.K., et al., 2008b. Critical temperatures for xylogenesis in conifers of cold climates. Global Eco. Biogeogr. 17(6): 696-707. https://doi.org/10.1111/j.1466-8238.2008.00417.xRuosch M., Spahni R., Joos F., Henne P.D., Knaap W.O., Tinner W., 2016. Past and future evolution of Abies alba forests in Europe – comparison of a dynamic vegetation model with paleo data and observations. Glob. Change Biol. 22(2): 727-740. https://doi.org/10.1111/gcb.13075Santini F., Andrisano T., Leonardi S., Ciaschetti G., Labriola M., et al., 2018. Tracking the origin of Silver fir plantations along the boundary between different genetic clusters in central Apennines: Implications for their management. Forest Ecol. Manag. 408: 220-227. https://doi.org/10.1016/j.foreco.2017.10.045Schueler S., Falk W., Koskela J., Lefèvre F., Bozzano M., et al., 2014. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Glob. Chang Biol. 20(5): 1498-511. https://doi.org/10.1111/gcb.12476Sexton J.P., McIntyre P.J., Angert A.L., Rice K.J., 2009. Evolution and Ecology of Species Range Limits. Annu. Rev. Ecol. Evol. Syst. 40: 415-436. https://doi.org/10.1146/annurev.ecolsys.110308.120317Shaw R.G., Etterson J.R., 2012. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195(4): 752-65. https://doi.org/10.1111/j.1469-8137.2012.04230.xSteen D.A., Barrett K., 2015. Should states in the USA value species at the edge of their geographic range? Conservation Priorities for Peripheral Populations. J. Wildlife Manage. 79(6): 872-876. https://doi.org/10.1002/jwmg.897.Thuiller W., Albert C., Araujo M.B., Berry P.M., Cabeza M., et al., 2008. Predicting global change impacts on plant species’ distributions: Future challenges. Perspect. Plant Ecol. Evol. System 9(3-4): 137-152. https://doi.org/10.1016/j.ppees.2007.09.004van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P., 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.xVendramin G.G., Lelli L., Rossi P., Morgante M., 1996. A set of primers for amplification of 20 chloroplast microsatellites in Pinaceae. Mol. Ecol. 5(4): 595-598. https://doi.org/10.1111/j.1365-294X.1996.tb00353.xVerbylaitė R., Pliūra A., Lygis V., Suchockas V., Jankauskienė J., Labokas J., 2017. Genetic Diversity and its Spatial Distribution in Self-Regenerating Norway Spruce and Scots Pine Stands. Forests 8(12): 470. https://doi.org/10.3390/f8120470Vieira J., Rossi S., Campelo F., Freitas H., Nabais C., 2014. Xylogenesis of Pinus pinaster under a Mediterranean climate. Ann. For. Sci. 71: 71-80. https://doi.org/10.1007/s13595-013-0341-5Vieira J., Nabais C., Rossi S., Carvalho A., Freitas H., Campelo F., 2017. Rain exclusion affects cambial activity in adult maritime pines. Agri. For. Meteorol. 237–238: 303–310. https://doi.org/10.1016/j.agrformet.2017.02.024Weir B.S., Cockerham C.C., 1984. Estimating F statistics for the analysis of population structure. Evolution 38(6): 1358-1370. https://doi.org/10.2307/2408641Wessa P., 2020. Free Statistics Software, Office for Research Development and Education, version 1.2.1, URL https://www.wessa.net/Wilson J.W. 1970. The Growing Tree. Amherst, MA: The University of Massachusetts Press, pp. 152.Wright S., 1965. The interpretation of population structure by F-statistics with special regards to systems of mating. Evolution 19(3): 95–420. https://doi.org/10.1111/j.1558-5646.1965.tb01731.xZiaco E., Truettner C., Biondi F., Bullock S., 2018. Moisture‐driven xylogenesis in Pinus ponderosa from a Mojave Desert mountain reveals high phenological plasticity. Plant Cell Environ. 41: 823–836. https://doi.org/10.1111/pce.13152Zohner C.M., Benito B.M., Svenning J.C., Renner S.S., 2016. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nature Climate Change 6(12): 1120-1123. https://doi.org/10.1038/nclimate3138

Downloads

Published

2021-12-27

Issue

Section

Research article