Research article

Seed germination characteristics of Phillyrea angustifolia L. and P. latifolia L. (Oleaceae), two Mediterranean shrub species having lignified endocarp

Sara Mira , Luciana Veiga-Barbosa, Félix Pérez-García

Sara Mira
Department of Plant Biology, School of Agronomics Engineering, Technical University of Madrid, Madrid, Spain. Email: sara.mira@upm.es
Luciana Veiga-Barbosa
Department of General Biology, Federal University of Bahia, Salvador, Bahia, Brazil
Félix Pérez-García
Department of Plant Biology, School of Agronomics Engineering, Technical University of Madrid, Madrid, Spain

Online First: February 05, 2015
Mira, S., Veiga-Barbosa, L., Pérez-García, F. 2015. Seed germination characteristics of Phillyrea angustifolia L. and P. latifolia L. (Oleaceae), two Mediterranean shrub species having lignified endocarp. Annals of Forest Research DOI:10.15287/afr.2015.304


The aim of this study was to determine the germination characteristics of Phillyrea angustifolia L. and P. latifolia L. seeds in order to develop an optimized propagation protocol for Phillyrea species. Seeds of P. angustifolia and P. latifolia were collected from wild plants growing in Cáceres province (CW Spain) and Andalucía (S Spain), respectively. Percentage of water uptake for P. latifolia seeds was calculated. Seeds with and without endocarp were germinated at different constant and alternating temperatures. Seeds without endocarp were soaked in distilled water or gibberellic acid, and then set to germinate. Seeds with endocarp of both species were stratified at 5 ºC for 30 or 90 days and then the endocarp was completely removed from the seeds before they were sowed. Chemical scarification with sulfuric acid and mechanical scarification were tested on P. angustifolia seeds with endocarp. Phillyrea endocarp was permeable to water, since Phillyrea seeds with endocarp imbibed water, but water uptake was faster when the endocarp was removed. Moreover, the encodarp could interfere mechanically in the emergence of the radicle, since seed germination of Phillyrea species was promoted by the complete removal of the lignified endocarp surrounding each seed. Optimal germination temperature for both species was 15 ºC, and lower temperatures produced secondary dormancy. Soaking in distilled water or gibberellic acid did not significantly enhance seed germination. Cold stratification and chemical scarification treatments were detrimental for seed germination.


Andrés C., 2011. Phillyrea L. In: Castroviejo S., Aedo C., Cirujano S., Laínz M., Montserrat P., Morales R., Mu-oz F., Navarro C., Paiva J., Soriano C., (ed.), Flora Iberica. Vol. 11. Madrid, Spain: Real Jardín Botánico de Madrid, CSIC, pp. 139-143.

Arnal A., 2013. Germination and Conservation of narrow leaf Phillyrea seeds (Phillyrea angustifolia L.) [Germinación y Conservación de Semillas de Labiérnago (Phillyrea angustifolia L.) (Oleaceae)]. Master's thesis. Máster Universitario en Recursos Fitogenéticos. Madrid, Spain: Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. pp. 58.

Bacchetta G., Bueno A., Sánchez G., Fenu G., Jiménez-Alfaro B., Mattana E., Piotto B., Virevaire M., 2008. Ex Situ Conservation of Wild Plants. [Conservación Ex Situ de Plantas Silvestres]. Asturias, Spain: Principado de Asturias/La Caixa. 378 pp. Anexo Digital I. pp. 15.

Baskin C.C., Baskin J.M., 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. London, UK: Academic Press, pp. 37-39.

Baskin J.M., Baskin C.C., 2004. A classification system for seed dormancy. Seed Science Research 14: 1-16. DOI: 10.1079/ SSR2003150

Baskin C.C., Zackrisson O., Baskin J.M., 2002. Role of warm stratification in promoting germination of seeds of Empetrum hermaphroditum (Empetraceae), a circumboreal species with a stony endocarp. American Journal of Botany 89: 486-493. DOI: 10.3732/ ajb.89.3.486

Bonner F.T., Karrfalt R., 2008. The Woody Plant Seed Manual. Agric. Handbook No. 727. Washington, DC. U.S. Department of Agriculture, Forest Service. pp. 107.

Catalán G., 1991. Phillyrea. In: Forest Tree and Shrub Seeds. [Semillas de Árboles y Arbustos Forestales] (Catalán, G., ed) Madrid, Spain: Instituto Nacional para la Conservación de la Naturaleza, pp. 265-266.

Chaves M.M., Pereira J.S., Maroco J., Rodrigues M.L., Ricardo C.P.P., Osorio M.L., Carvalho I., Faria T., Pinheiro C., 2002. How plants cope with water stress in the field?. Photosynthesis and growth. Annals of Botany 89: 907–916.DOI: 10.1093/aob/mcf105

Christensen J.H., Hewitson B., Busuioc A., Chen A., Gao X., Held I., Jones R., Kolli R.K., Kwon W.T., Laprise R., et al. 2007. Regional Climate Projections. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L., (ed.) Climate Change 2007: The Physical Science Basis. Contribution of Working Group to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, pp. 847-940.

Cuneo P., Offord C.A., Leishman M.R., 2010. Seed ecology of the invasive woody plant African Olive (Olea europaea subsp. cuspidata): implications for management and restoration. Australian Journal of Botany 58: 342-348. DOI: 10.1071/BT10061

Demmig-Adams B., Adams III W.W., 1996. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science 1: 21–26. DOI: 10.1016/S1360-1385(96)80019-7

De Marco A., Gentile A.E., Arena C., De Santo A.V., 2005. Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy. International Journal of Wildland Fire 14: 365-377. DOI: 10.1071/ WF05030

Dimitrakopoulos A.P., Mitsopoulos I.D., Kaliva A., 2013. Short communication. Comparing flammability traits among fire-stricken (low elevation) and non fire- stricken (high elevation) conifer forest species of Europe: a test of the Mutch hypothesis. Forest System 22: 134-137. DOI: 10.5424/fs/2013221-02475

Ellis R.H., Roberts E.H., 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology 9: 373-409.

García-Fayos P., Gulias J., Martínez J., Marzo A., Melero J.P., Traveset A., 2001. Ecological Basis for Forest Tree Seed Collection, Storage and Germination of the Valencian Community. [Bases Ecológicas para la Recolección, Almacenamiento y Germinación de Semillas de Especies de Uso Forestal de la Comunidad Valenciana]. Comunidad Valenciana, Spain: IMEDEA, Banc de Llavors Forestals. pp 29-30.

Herranz J.M., Ferrandis P., Copete M.A., Duro E.H., Zalacain A., 2006. Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecology 184: 259-272.
DOI: 10.1007/s11258-005-9071-6

Herrera C.M., Jordano P., López Soria L., Amat J.A., 1994. Recruitment of a mast-fruiting, bird-dispersed tree-bridging frugivore activity and seedling establishment. Ecology Monographies 64: 315-344. DOI: 10.2307/2937165

Ivetic V., Skoric M., 2013. The impact of seeds provenance and nursery production method on Austrian pine (Pinus nigra Arn.) seedlings quality. Annals of Forest Research 56: 297-305.

Kigel J., 1995. Seed germination in arid and semiarid regions. In: Kigel J, Galili G, editors. Seed Development and Germination. New York, USA: Marcel Dekker, pp 645-699.

Kutbay H.G., Kilinç M., 1994. Sclerophylly in Quercus cerris L. var. cerris and Phillyrea latifolia L. and edaphic relations of these species. Species Vegetatio 113(2): 93-97.

Lazar S.L., Mira S., Pamfil D., Martínez-Laborde J.B., 2014. Germination and electrical conductivity tests on artificially aged seed lots of 2 wall-rocket species. Turkish Journal of Agriculture and Forestry 38: doi:10.3906/tar-1402-76 DOI: 10.3906/tar-1402-76

Martínez-García F., Guerrero-García S., Pérez-García F., 2012. Evaluation of reproductive success and conservation strategies for Senecio coincyi (Asteraceae), a narrow and threatened species. Australian Journal of Botany 60: 517-525. DOI: 10.1071/BT12109

Mira S., Estrelles E., Gonzalez-Benito M.E., Corbineau F., 2011a. Biochemical changes induced in seeds of Brassicaceae wild species during ageing. Acta Physiologia Plantarum 33: 1803–1809.
DOI: 10.1007/s11738-011-0719-7

Mira S., González-Benito M.E., Ibars A.M., Estrelles E., 2011b. Dormancy release and seed ageing in the endangered species Silene diclinis. Biodiversity and Conservation 20: 345–358. DOI: 10.1007/ s10531-010-9833-x

Mira S., Estrelles E., Gonzalez-Benito M.E., 2015. Effect of water content and temperature on seed longevity of seven Brassicaceae species after 5 years storage. Plant Biology 17: 153-162. DOI: 10.1111/plb.12183

Mitrakos K., Diamantoglou S., 1984. Endosperm dormancy breakage in olive seeds. Physiologia Plantarum, 62: 8-10. DOI: 10.1111/j.1399-3054.1984.tb05915.x

Morales-Sillero A., Suarez M.P., Jiménez M.R., Casanova L., Ordovas J., Rallo P., 2012. Olive seed germination and initial seedling vigor as influenced by stratification treatment and the female parent. Hortscience 47: 1672-1678.

Pardos M., Montero G., Ca-ellas I., Ruiz del Castillo J., 2005. Ecophysiology of natural regeneration of forest stands in Spain. Forest System 14: 434-445.

Pausas J., Llovet J., Rodrigo A., Vallejo R., 2008. Are wildfires a disaster in the Mediterranean basin?- A review. International Journal of Wildland Fire 17: 713–723. DOI: 10.1071/WF07151

Pérez-García F., Varela F., González-Benito M.E., 2012. Morphological and germination response variability in seeds of wild yellow gentian (Gentiana lutea L.) accessions from northwest Spain. Botany 90: 731-742. DOI: 10.1139/b2012-028

Pi-ol J., Terradas J., Lloret F., 1998. Climate warming, wildfire hazard, and wildfire occurrence in Coastal Eastern Spain. Climatic Change 38: 345–357. DOI: 10.1023/A:1005316632105

Piotto B., Di Noi A., 2003. Seed Propagation of Mediterranean Trees and Shrubs. [Propagazione per Seme di Alberi e Arbusti della Flora Mediterranea]. Rome, Italy: Agenzia Nazionale per la protezione dell'Ambiente (ANPA). pp. 138.

Soleimani A., Etemad V., Calagari M., Namiranian M., Shirvani A., 2014. Influence of climatic factors on fruit morphological traits in Populus euphratica Oilv. Annals of Forest Research 57: 31-38. DOI: 10.15287/afr.2014.188

Takos I.A., Efthimiou G.S., 2003. Germination results on dormant seeds of fifteen tree species autumn sown in a northern Greek nursery. Silvae Genetica 52: 67-71.

Thanos C.A., Georghiou K., Kadis C.C., Pantazi C., 1992. Cistaceae: a plant family with hard seeds. Israel Journal of Botany 41: 251-263.

Thanos C.A., Kadis C.C., Skarou F., 1995. Ecophysiology of germination in the aromatic plants thyme, savory and C. ladanifer. International Journal of Wildland Fire 2: 15-20.

Traveset A., Robertson Q.W., Rodríguez-Pérez J., 2007. A review on the role of endozoochory in seed germination. In: Dennis AJ, Schupp EW, Green RA, Westcott DA, editors. Seed Dispersal, Theory and its Application in a Changing World. London, UK: CABI International, pp. 78-103. DOI: 10.1079/978184593 1650.0078

Varela M.C., 2000. Mediterranean oaks. EUFORGEN Genetic Conservation Network. Forest Systems 9: 95-102.

Yucedag C., Gultekin H.C., 2011. Effects of fruit collection date on Phillyrea latifolia L. seed germination. Pakistan journal of biological sciences 14: 785-787. DOI: 10.3923/pjbs.2011.785.787


No Supplimentary Material available for this article.
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Sara Mira
  • Luciana Veiga-Barbosa
  • Félix Pérez-García
  • Sara Mira
  • Luciana Veiga-Barbosa
  • Félix Pérez-García