Physiological and biochemical adjustments of the assimilatory system of advance regeneration Norway spruce to cutting-induced changes in the environment
DOI:
https://doi.org/10.15287/afr.2025.3255Abstract
Various forestry practices (shelterwood systems, selective felling) promoted to the natural regeneration of Norway spruce can accelerate the emergence of the advance growth. Overstory removal can cause drastic changes in the environment, resulting in the death of newly regenerated trees or blocking their growth. We studied changes in the content of photosynthetic pigments, parameters of chlorophyll a fluorescence, activity of antioxidant system enzymes in the needles of 20-year-old advance regeneration Norway spruce and alteration of xylem radial growth rate in response to abrupt cutting-induced changes in the environment. Cuttingled to inhibited of photochemical activity (the Fv/Fm, Y(II) and ETR decreased), rearrangement of the pigment system (the content of Chl a and Chl b decrease,Chl a/b ratio increase) and a sharp rise in NPQ. A year later, after cutting needles were acclimated to the new conditions. Low NPQ level was associated with a reduction in Chl b content, an increase of Chl a content and Chl a/b ratio and upregulation of antioxidant enzymes. The activity of photochemical processes had raised (the Fv/Fm, Y(II) and ETR increased) and radial xylem increment was promoted significantly.References
Baker N.R., 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59(1): 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
Blokhina O., Virolainen E., Fagerstedt K.V., 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2): 179-194. https://doi.org/10.1093/aob/mcf118
Caudullo G., Tinner W., de Rigo D., 2016. Picea abies in Europe: distribution, habitat, usage and threats. In San-Miguel-Ayanz J., de Rigo D., Caudullo G., Houston Durrant T., Mauri A. (eds.), European atlas of forest tree species. Luxembourg: Publication Office of the European Union, pp. 114-116. https://doi.org/10.7892/boris.80794
Devireddy A.R., Zandalinas S.I., Fichman Y., Mittler R., 2021. Integration of reactive oxygen species and hormone signaling during abiotic stress. The Plant Journal 105(2): 459-476. https://doi.org/10.1111/tpj.15010
Dymova O.V., Golovko T.K., Grzyb J., Strzalka K., 2010. Сharacterization of pigment apparatus in winter-green and summer-green leaves of a shade-tolerant plant Ajugareptan. Russian Journal of Plant Physiology 57(6): 755-763. https://doi.org/10.1134/S1021443710060026
Felton A., Lindbladh M., Brunet J., Fritz Ö., 2010. Replacing coniferous monocultures with mixed-species production stands: An assessment of the potential benefits for forest biodiversity in northern Europe. Forest Ecology and Management 260(6): 939-947. https://doi.org/10.1016/j.foreco.2010.06.011
Friedland N., Negi S., Vinogradova-Shah T., Wu G., Ma L., et al., 2019. Fine-tuning the photosynthetic light harvesting apparatus for improved photosynthetic efficiency and biomass yield. Sci Rep 9, 13028. https://doi.org/10.1038/s41598-019-49545-8
Fukai T., Ushio-Fukai M., 2011. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxidants & Redox Signaling, 15(6), 1583–1606. https://doi.org/10.1089/ars.2011.3999
Gnojek A.R., 1992. Changes in chlorophyll fluorescence and chlorophyll content in suppressed Norway spruce [Picea abies (L.) Karst.] in response to release cutting. Trees 6: 41-47. https://doi.org/10.1007/BF00224498
Goh C.H., Ko S.M., Koh S., Kim Y.-J., Bae H.-J., 2012. Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J. Plant Biol 55: 93-101. https://doi.org/10.1007/s12374-011-9195-2
Grassi G., Bagnaresi U., 2001. Foliar morphological and physiological plasticity in Picea abies and Abies alba saplings along a natural light gradient. Tree Physiology 21(12-13): 959-967. https://doi.org/10.1093/treephys/21.12-13.959
Hökkä H., Repola J., 2012. Five-year height growth of Norway spruce advance regeneration following cutting of small canopy openings in a spruce mire. 14th International Peat Congress. Extended abstract No. 163, 1-5.
Holgén P., Hånell B., 2000. Performance of planted and naturally regenerated seedlings in Picea abies - dominated shelterwood stands and clearcuts in Sweden. Forest Ecology and Management 127(1–3): 129-138. https://doi.org/10.1016/S0378-1127(99)00125-5
Kitajima K. Hogan K.P., 2003. Increases of chlorophyll a/b ratios during acclimation of tropical woody seedlings to nitrogen limitation and high light. Plant, Cell & Environment 26 (6): 857–865. https://doi.org/10.1046/j.1365-3040.2003.01017.x
König J., Baier M., Horling F., Kahmann U., Harri, G., et al., 2002. The plant-specific function of 2-Cys peroxiredoxin-mediated detoxification of peroxides in the redox-hierarchy of photosynthetic electron flux. Proceedings of the National Academy of Sciences 99(8) 5738–5743. https://doi.org/10.1073/pnas.072644999
Kreslavski V.D., Allakhverdiev S.I., Los D.A., Kuznetsov V.V., 2012. Signaling role of reactive oxygen species in plants under stress. Russ J Plant Physiol 59: 141-154. https://doi.org/10.1134/S1021443712020057
Kunugi M., Satoh S., Ihara K., Shibata K., Yamagishi Yu, et al., 2016. Evolution of green plants accompanied changes in light-harvesting systems. Plant and Cell Physiology 57(6): 1231-1243. https://doi.org/10.1093/pcp/pcw071
Kuuluvainen T., Tahvonen O., Aakala T., 2012. Even-aged and uneven-aged forest management in boreal Fennoscandia: a review. Ambio 41: 720-737. https://doi.org/10.1007/s13280-012-0289-y
Lapenis A., Robinson G., Lawrence G., 2022. Radial growth decline of white spruce (Picea glauca) during hot summers without drought: preliminary results from a study site south of a boreal forest border. Can J For Res 52(4): 582-590. https://doi.org/10.1139/cjfr-2021-0268
Lehtonen A., Leppä K., Rinne-Garmston K. et al., 2023. Fast recovery of suppressed Norway spruce trees after selection harvesting on a drained peatland forest site. For. Ecol. Manag. 530: 120759. https://doi.org/10.1016/j.foreco.2022.120759
Lichtenthaler H.K., 1987. Chlorophylls and carotenoids – pigments of photosynthetic biomembrans. Methods of Enzymology 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Luguza S., Snepsts G., Donis J., Desaine I., Baders E., et al., 2020. Advance regeneration of Norway spruce and Scots pine in hemiboreal forests in Latvia. Forests 11(2), 215. https://doi.org/10.3390/f11020215
Maxwell K., Johnson G.N., 2000. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51(345): 659–668. https://doi.org/10.1093/jexbot/51.345.659
Melis A., 2009. Solar energy conversion efficiencies in photosynthesis: Minimizing the chlorophyll antennae to maximize efficiency. Plant Science 177: 272–280. https://doi.org/10.1016/j.plantsci.2009.06.005
Metslaid M., Ilisson T., Nikinmaa E., Kusmin J., Jõgiste K., 2005a. Recovery of advance regeneration after disturbances: acclimation of needle characteristics in Picea abies. Scandinavian Journal of Forest Research 20(sup6): 112-121. https://doi.org/10.1080/14004080510043352
Metslaid M., Ilisson T., Vicente M., Nikinmaa E., Jogiste K., 2005b. Growth of advance regeneration of Norway spruce after clear-cutting. Tree Physiology 25 (7): 793-801. https://doi.org/10.1093/treephys/25.7.793
Metslaid M., Jõgiste K., Nummert K., 2007. Net photosynthesis as indicator of acclimation of Norway spruce advance regeneration. Miðkininkystë 1(61), PriedasNr. 1: 20-24.
Mishra N.P., Fatma T., Singhal G.S., 1995. Development of antioxidative defense system of wheat seedlings in response to high light. Physiologia plantarum 95(1): 77-82. https://doi.org/10.1111/j.1399-3054.1995.tb00811.x
Møller I.M., Jensen P.E., Hansson A., 2007. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58: 459-481. https://doi.org/10.1146/annurev.arplant.58.032806.103946
Müller P., Li X.P., Niyogi K.K., 2001. Non-photochemical quenching. A response to excess light energy. Plant Physiol 125: 1558-1566. https://doi.org/10.1104/pp.125.4.1558
Murchie E.H., Ruban A.V., 2020. Dynamic non-photochemical quenching in plants: from molecular mechanism to productivity. Plant J 101(4): 885-896. https://doi.org/10.1111/tpj.14601
Nar H., Saglam A., Terzi R., Várkonyi Z., Kadioglu A., 2009. Leaf rolling and photosystem II efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetica 47: 429-436. https://doi.org/10.1007/s11099-009-0066-8
Nazarova L. E., 2015. Klimat Karelii. In Filatov N.N., Subetto D.A., Regerand T.I., editors. Morya, Ozera I transgranichnye vodosbory Rossii, Finlyandii I Estonii. Petrozavodsk: Karel’skij nauchnyj centr RAN, p. 192–200 [in Russian].
Niemistö P., Korpunen H., Nuutinen Y., 2024. Harvesting efficiency and understory damage with different cutting methods on two storied stands of silver birch and Norway spruce. Silva Fennica 58(2): 23065. https://doi.org/10.14214/sf.23065
Niemistö P., Valkonen S., 2021. Growth response to thinning in two-storied mixed stands of Scots pine and Norway spruce. Scandinavian Journal of Forest Research 36(6): 448-459. https://doi.org/10.1080/02827581.2021.1961017
Nikerova K.M., Galibina N.A., Sofronova I.N., Borodina M.N., Moshchenskaya Y.L., et al., 2023. An indicating role of antioxidant system enzymes at the stage of active structural anomalies formation in Karelian birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti). Protein & Peptide Letters 30(4): 325–334. https://doi.org/10.2174/0929866530666230228113430
Nikerova K. M., Galibina N.A., Moshchenskaya Yu.L, Novitskaya L.L, Podgornaya M.N., Sofronova I.N., 2019. Opredelenie aktivnosti superoksid dismutazy i polifenoloksidazy v drevesine Betula pendula var. carelica (Betulaceae) pri raznoj stepeni narusheniya ksilogeneza. Rastitelnye Resursy. 55(2): 213-230 [in Russian]. https://doi.org/10.1134/S0033994619020134
Nikerova K.M., Galibina N.A., Moshchenskaya Y.L., Tarelkina T.V., Borodina M.N., et al., 2021. Upregulation of antioxidant enzymes is a biochemical indicator of abnormal xylogenesis in Karelian birch. Trees 36(2): 517–529. https://doi.org/10.1007/s00468-021-02225-5
Nikerova K.M., Galibina N.A., Moshchenskaya Yu.L., Novitskaya L.L., Podgornaya M.N., Sofronova I.N., 2018. Fermenty antioksidantnoj sistemy – indicatory raznyh scenariev ksilogeneza: v rannem ontogeneze i vo vzroslom sostoyanii (na primere Betula pendula Roth.). Trudy KarNTs RAN [Trans. KarRC RAS] 6: 68-80 [in Russian]. https://doi.org/10.17076/eb787
Nikolova P.S., Geyer J., Brang P., Cherubini P., Zimmermann S., Gärtner H., 2021. Changes in root–shoot allometric relations in alpine Norway spruce trees after strip cutting. Frontiers in Plant Science 12: 703674. https://doi.org/10.3389/fpls.2021.703674
Nilsson U., Gemmel P., Johansson U., Karlsson M., Welander T., 2002. Natural regeneration of Norway spruce, Scots pine and birch under Norway spruce shelterwoods of varying densities on a mesic-dry site in southern Sweden. Forest Ecology and Management 161(1-3): 133-145. https://doi.org/10.1016/s0378-1127(01)00497-2
Nilsson U., Luoranen J., Kolström T., Örlander G., Puttonen P., 2010. Reforestation with planting in Northern Europe. Scand J For Res 25: 283–294. https://doi:10.1080/02827581.2010.498384
Örlander G., Karlsson C., 2000. Influence of shelterwood density on survival and height increment of Picea abies advance growth. Scandinavian Journal of Forest Research 15(1): 20-29. https://doi.org/10.1080/02827580050160439
Palviainen M., Finér L., Mannerkoski H., Piirainen S., Starr M., 2005. Changes in the above- and below-ground biomass and nutrient pools of ground vegetation after clear-cutting of a mixed boreal forest. Plant and Soil 275(1-2): 157-167. https://doi.org/10.1007/s11104-005-1256-1
Pospíšil P., 2017 Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front Plant Sci Sec. Plant Cell Biology 7 https://doi.org/10.3389/fpls.2016.01950
Raven J.A., 2011. The cost of photoinhibition. Physiologia Plantarum. 142: 87-104. https://doi.org/10.1111/j.1399-3054.2011.01465.x
Rosner S., Gierlinger N., Klepsch M., Karlsson B., Evans R., et al., 2018. Hydraulic and mechanical dysfunction of Norway spruce sapwood due to extreme summer drought in Scandinavia. Forest Ecology and Management 409: 527-540. https://doi.org/10.1016/j.foreco.2017.11.051
Ruban A.V., 2016. Nonphotochemical сhlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170(4): 1903–1916. https://doi.org/10.1104/pp.15.01935
Sato R., Ito H., Tanaka A., 2015. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions. Photosynth Res 126: 249–259. https://doi.org/10.1007/s11120-015-0145-6
Schweingruber F.H., 2007. Modification of the tree-ring structure due to destructive agents in wood and bark. In, Timmel T.E., Wimmer R. (eds.), Wood Structure and Environment Springer. Verlag, Berlin, Heidelberg, pp. 179–227. https://doi.org/10.1007/978-3-540-48548-3_8
Schweingruber F.H., Börner A., 2018. Anatomical adaptations to temporarily changed environmental conditions. The Plant stem: a microscopic aspect. Springer, Cham., pp. 141-168. https://doi.org/10.1007/978-3-319-73524-5_10
Szymański S., 2007. Silviculture of Norway spruce. In Tjoelker M.G., Boratyński A., Bugała W. (eds), Biology and Ecology of Norway Spruce. Forestry Sciences, 78, Springer, Dordrecht, pp. 295-307. https://doi.org/10.1007/978-1-4020-4841-8_13
Takahashi S., Murata N., 2008. How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13(4): 178-182. https://doi.org/10.1016/j.tplants.2008.01.005
Velasco M.H., Mattsson A. 2020. Light shock stress after outdoor sunlight exposure in seedlings of Picea abies (L.) Karst. and Pinus sylvestris L. pre-cultivated under LEDs –possible mitigation treatments and their energy consumption. Forests 11(3), 354. https://doi.org/10.3390/f11030354
Wang G., Zeng F., Song P., Sun B., Wang Q., Wang J., 2022. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. Journal of Plant Physiology272,153669. https://doi.org/10.1016/j.jplph.2022.153669
Yin H.J., Liu Q., Lai T., 2008. Warming effects on growth and physiology in the seedlings of the two conifers Picea asperata and Abies faxoniana under two contrasting light conditions. Ecological Research 23(2): 459-469. https://doi.org/10.1007/s11284-007-0404x
Zhao X., Chen T., Feng, B., Zhang C., Peng S., et al., 2017. Non-photochemical quenching plays a key role in light acclimation of rice plants differing in leaf color. Front Plant Sci 10. https://doi.org/10.3389/fpls.2016.01968
Downloads
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access