Effects of mistletoe infestation on the decline and mortality of Abies cephalonica in Greece


  • Yannis Raftoyannis Department of Forestry, Central Greece University of Applied Sciences, 36100 Karpenisi, Greece
  • Kalliopi Radoglou Department of Forestry and Management of Environment and Natural Resources, Democritus University of Thrace, 68200 Orestiada, Greece
  • Michael Bredemeier Forest Ecosystems Research, Center for Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany




Viscum album, Abies cephalonica, crown condition, water potential


In recent decades, stands of Greek fir (Abies cephalonica Loudon) are declining and high tree mortality has been observed in some years. The exact causes of fir decline and mortality have not been established although many have been proposed (drought, climatic change, air pollution and attacks by pathogens or insects). This study has focused on the effects of mistletoe (Viscum album L.) on fir crown condition by assessing the mistletoe infestation level and its effects on fir defoliation. In the fir forests of Central Greece, the tree crown condition and the extent of mistletoe infestation were assessed and their relationships with tree height, altitude and aspect were investigated. The role of mistletoe on overall fir mortality was investigated by assessing standing trees that had died recently. The leaf water potential and chlorophyll fluorescence of mistletoe and fir were also measured during one growth season. The results showed that mistletoe infestation is related to crown defoliation. Altitude and tree height were not related with mistletoe infestation while infestation levels were lower on northern exposures. Mistletoe showed significantly lower water potentials and higher photochemical efficiencies than fir branches.


Ascough G.D., Novák O., Pěnčík A., Rolčík J., Strnad M., Erwin J.E., Van Staden, J., 2009. Hormonal and cell division analyses in Watsonia lepida seedlings. J. Plant Physiol. 166:1497-1507. DOI: 10.1016/ j.jplph.2009.03.009 Baghel R.S., Tiwari S., Tripathi M.K., 2008. Comparison of morphogenic and plant regeneration ability of some explants of teak (Tectona grandis Linn. F). J. Agric. Tech. 4:125-136. Bosela M.J., 2009. Effects of β-lactam antibiotics, auxins, and cytokinins on shoot regeneration from callus cultures of two hybrid aspens, Populus tremuloides x P. tremula and P. x canescens x P. gradidentata. Plant Cell Tiss. Organ Cult. 98:249-261. DOI: 10.1007/ s11240-009-9555-5 Costa M.G.C., Nogueira F.T.S., Figueira M.L., Otoni W.C., Brommonschenkel S.H., Cecon P.R., 2000. Influence of the antibiotic Timentin on plant regeneration of tomato (Lycopersicon esculentum Mill.) cultivars. Plant Cell Rep. 19:327–332. DOI: 10.1007/ s002990050021 Fofana I.J., Ofori D., Poitel M., Verhaegen D., 2009. Diversity and genetic structure of teak (Tectona grandis L.f) in its natural range using DNA microsatellite markers. New For. 37:175–195. DOI: 10.1007/ s11056-008-9116-5 Giri C.C., Shyamkumar B., Anjaneyulu B. 2004. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview. Trees 18:115-135. DOI: 10.1007/s00468-003-0287-6 Gyves E.M., Royani J.I., Rugini E., 2007. Efficient method of micropropagation and in vitro rooting of teak (Tectona grandis L.) focusing on large-scale industrial plantations. Ann. For. Sci. 64:73–78. DOI: 10.1051/forest:2006090 Katayama N., Takano H., Sugiyama M., Takio S., SakaiA., Tanaka K., Kuroiwa H., Ono K. 2003. Effects of Antibiotics that Inhibit the Bacterial Peptidoglycan Synthesis Pathway on Moss Chloroplast Division. Plant Cell Physiol. 44:776-781. DOI: 10.1093/pcp/pcg096 Kong L., Dai D., Shang Li M.K., Zhang C.X., 2009. Thidiazuron-induced somatic embryos, their multiplication, maturation, and conversion in Cinnamomum pauciflorum Nees (Lauraceae). New For. 38:131–142. DOI: 10.1007/s11056-009-9135-x Kucharska D., Orlikowska T., 2009. Enhancement of in vitro organogenetic capacity of rose by preculture of donor shoots on the medium with thidiazuron. Acta Physiol. Plant 31:495–500. DOI: 10. 1007/s11738-008-0258-z Le V.Q., Belles-Isles J., Dusabenyagasani M., Tremblay F.M., 2001. An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. J. Exp. Bot. 52:2089-2095. Lin J-J., Assad-Garcia N., Kuo J., 1995. Plant hormone effect of antibiotics on the plant transformation efficiency of plant tissues by Agrobacterium tumefaciens cells. Plant Sci. 109:171–177. DOI: 10.1016/0168-9452(95)04168-T Ling H.Q., Kriseleit D., Ganal M.W., 1998. Effect of ticarcillin/potassium clavulanate on callus growth and shoot regeneration in Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum Mill.). Plant Cell Rep. 17:843–847. DOI: 10. 1007/s002990050495 Mamidala P., Nanna R.S., 2009. Efficient in vitro plant regeneration, flowering and fruiting of dwarf Tomato cv. Micro-Msk. Plant Omics J. 2:98-102. Mendes A.F.S., Cidade L.C., de Oliveira M.L.P., Otoni W.C., Soares-Filho W.S., Costa M.G.C., 2009. Evaluation of novel beta-lactam antibiotics in comparison to cefotaxime on plant regeneration of Citrus sinensis L. Osb. Plant Cell Tiss. Organ Cult. 97:331–336. DOI: 10. 1007/s11240-009-9518-x Miranda J., Konschuh M.N., Yeung E.C., Chinnappa C.C., 1999. Invitro plantlet regeneration from hypocotyls explants of Stellaria longipes (Caryophyllaceae). Can.J. Bot. 77: 318–322. DOI: 10.1139/ cjb-77-2-318 Murashige T., Skoog F., 1962. Arevised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497. DOI: 10.1111/j.1399-3054.1962.tb08052.x Murthy B.N.S., Murch S.J., Saxena P.K., 1998. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell. Dev. Biol. 34: 267-275. DOI: 10.1007/BF02822732 Nauerbey B., Billing K., Wyndaele R., 1997. Influence of the antibiotic Timentin on plant regeneration compared to carbenicillin and cefotaxime in concentrations suitable for elimination of Agrobacterium tumefaciens. Plant Sci. 123:169-177. DOI: 10.1016/S0168-9452(96)04569-4 Paiva Neto V.B., Mota T.R., Otoni W.C., 2003. Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana). Plant Cell Tiss. Organ Cult. 75:159–167. DOI: 10.1023/A:1025063906822 Pollock K., Barfield D.G., Shields R., 1983. The toxity of antibiotics to plant cell cultures. Plant cell Rep. 2:36-39. Poupin M.J., Arce-Johnson P., 2005. Transgenic Trees for a New Era. In Vitro Cell. Dev. Biol.-Plant 41:91–101. DOI: 10.1079/IVP2004587 Recht M.I., Douthwaite S., Puglisi J.D., 1999. Basis for prokaryotic specificity of action of aminoglycoside antibiotics. The EMBO Journal 18:3133-3138. DOI: 10.1093/emboj/18.11.3133 Shirin F., Rana P.K., Mandal A.K., 2005. Invitro clonal propagation of mature Tectona grandis through axillary bud proliferation. J. For. Res. 10:465–469. DOI: 10.1007/s10310-005-0173-8 Souza B.M., Kraus J.E., Endres L., Mercier H., 2003. Relationships between endogenous hormonal levels and axillary bud development of Ananas comosus nodal segments. Plant Physiol. Bioch. 41:733–739. DOI: 10.1016/S0981-9428(03)00112-8 Tereso S., Miguel C., Maroco J., Oliveira M.M., 2006. Susceptibility of embryogenic and organogenic tissues of maritime pine (Pinus pinaster) to antibiotics used in Agrobacterium-mediated genetic transformation. Plant Cell Tiss. Organ Cult. 87:33-40. DOI: 10.1007/s11240-006-9130-2 Tiwari S.K., Tiwari K.P., Siril E.A., 2002. An improved micropropagation protocol for teak. Plant Cell, Tiss. Organ Cult. 71:1-6. DOI: 10.1023/ A:1016570000846 Wightman F., Lighty D.L., 1982. Identification of phenylacetic acid as a natural auxin in the shoots of higher plants. Physiol. Plant. 55:17–24. DOI: 10.1111/ j.1399-3054.1982.tb00278.x Zhi-neng L., Guo-feng L., Fang F., Man-zhu B., 2007. Adventitious shoot regeneration of Platanus acerifolia Willd. facilitated by Timentin, an antibiotic for suppression of Agrobacterium tumefaciens in genetic transformation. For. Stud. China9:14–18. DOI: 10.1007/s11632-007-0003-5






Research article