Research article

Impact of drought and stand edge on mycorrhizal density on the fine roots of Norway spruce

Vítězslava Pešková , František Lorenc, Roman Modlinger, Veronika Pokorná

Vítězslava Pešková
Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague 6 - Suchdol, Czech Republic. Email: peskovav@fld.czu.cz
František Lorenc
Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague 6 - Suchdol, Czech Republic
Roman Modlinger
Forestry and Game Management Research Institute, Strnady 136, 156 04 Praha 5 – Zbraslav, Czech Republic
Veronika Pokorná
Czech University of Life Sciences Prague, Faculty of Forestry and Wood Sciences, Kamýcká 129, 165 21 Prague 6 - Suchdol, Czech Republic

Online First: April 20, 2015
Pešková, V., Lorenc, F., Modlinger, R., Pokorná, V. 2015. Impact of drought and stand edge on mycorrhizal density on the fine roots of Norway spruce. Annals of Forest Research DOI:10.15287/afr.2015.364


This paper evaluates the mycorrhizal status and root system of Norway spruce (Picea abies (L.) Karst.) with respect to trees’ position within the stand and artificially induced drought stress. Root systems were sampled during autumn of 2008, 2009 and 2013 from spruces exposed to varying conditions (totalling 18 trees, 47 samples). The experiment involved six groups of 3 spruces each. Three groups were growing within the stand and three groups at the stand’s edge. One tree from each group (total 6) was exposed to artificial drought using shelters deflecting rainfall away from the root system. For each sample, the number of active and non-active mycorrhizae on 20 root segments about 5 cm long was assessed. The densities of active and non-active mycorrhizae, proportion of active mycorrhizae, and root dry biomass weight were assessed. Factors’ significances were determined using ANOVA and the Tukey-Kramer test or the Kruskal-Wallis and Dunn’s tests. Samples from outside the sheltered area were characterized by higher numbers of active mycorrhizae than were those sampled within the sheltered area. Induced drought stress significantly influenced active mycorrhizae density. Significantly higher root dry biomass (roots <1 mm in diameter) was found at the stand’s interior versus its edge.


Blasius D., KottkeI., Oberwinkler F., 1989. Spatial and seasonal dynamics of ectomycorrhiza of Picea abies (L.) Karst. In the Black Forest. Agriculture, Ecosystems and Environmet 28: 27-30. DOI: 10.1016/0167-8809(90)90007-Z

Caisová V., 1994. Hodnocení mykorhizace sazenic smrku pichlavého (Picea pungens) po aplikaci tekutého a suchého inokula lakovky (Laccaria proxima). Práce VÚLHM 79: 117/123.

Cairney J.W.G., 2012. Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology and Biochemistry, 47: 198-208. DOI: 10.1016/j.soilbio. 2011.12.029

Cudlin P., Kieliszewska-Rokicka B., Rudawska M., Grebenc T., Alberton O., Lehto T., Bakker M. R., Børja I., Konôpka B., Leski T., Kraigher H., Kuyper T. W., 2007. Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosystems 141: 406-425. DOI: 10.1080/11263500701626028

Čater M., Simončič P., 2010. Root distribution of under-planted European beech (Fagus sylvatica L.) below the canopy of a mature Norway spruce stand as a function of light. European Journal of ForestResearch 129: 531-539. DOI: 10.1007/s10342-010-0356-5

Desprez-Loustau, M.L., Marcais, B., Nageleisen, L.M., Piou, D., Vannini, A., 2006. Interactive effects of drought and pathogens in forest trees. AnnalesForestScience, 63: 597–612. DOI: 10.1051/forest:2006040

Domisch T., Finér R., Lehto T., 2002. Growth, carbohydrate and nutrient allocation of Scots pine seedlings after exposure to simulated low soil temperature in spring. Plant and Soil 246: 75-86. DOI: 10.1023/A:1021527716616

Feil W., KöttkeI., Oberwinkler F., 1988. The effect of drought on mycorrhizal production and very fine root system development of Norway spruce under natural and experimental conditions. Plant and Soil 108: 221-231. DOI: 10.1007/BF02375652

Fellner R., Pešková V., 1995. Effects od industrial pollutants on ectomycorhizal relationships in temperate forests. Can.J. Bot. 73 (Suppl. 1): 1310-1315. DOI: 10.1139/b95-392. DOI: 10.1139/b95-392

Fransson P.M.A., TaylorA.F.S, Finlay R.D., 2000. Effect of continuous optimal ferilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree physiology 20: 599-606. DOI: 10.1093/treephys/20.9.599

Gaul D., Hertel D., Borken W., Matzner E., Leuschner C., 2008. Effect of experimental drought on the fine root system of mature Norway spruce. Forestecology and Management 256: 1151-1159. DOI: 10.1016/j.foreco.2008.06.016

Goisser M., ZangU., Matzner E., Borken W., Häberle K.-H. Matyssek R., 2013. Growth of juvenile beech (Fagus sylvatica L.) upon transplant into a wind-opened spruce stand of heterogeneous light and water conditions. ForestEcology and Management 310: 110-119.
DOI: 10.1016/j.foreco.2013.08.006

Gryndler M., Baláž M., Hršelová H., Jansa J., Vosátko M. 2004. Mykorhizní symbióza, o soužití hub s kořeny rostlin. Academie Praha, 366 p.

Hintze J.L. 2007. NCSS Help System. Kaysville, NCSS: 2823 p.

ISO/DIS 10390, 1992: Soil quality – Determination of pH. International Organization for Standardization.

KałuckaI., Jagodziński A.A., 2013. Grzyby ektomykoryzowe w obliegu węgla w ekosystemach leśnych. Sylwan 157 (11): 817-830.

Kocourek R., 1991. Závislost odumírání smrku ztepilého (Picea abies (L.) Karst.) v imisních oblastech na ekologických charakteristikách ektomykorrhizních symbióz. Kandidátská disertační práce. Ústav krajinné ekologie ČSAV, České Budějovice, 137 p.

Landeweert R., Veenman C., Kuyper T.W., Fritze H., Wernars K., Smit E., 2003. Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiology Ecology 45: 283-292. DOI: 10.1016/S0168-6496(03)00163-6

Last F.T., Pelham J., Mason P.A., Ingleby K., 1979. Influence of leaves on sporophore production by fungi forming sheathing mycorrhizas with Betula spp. Nature 280: 168-169.
DOI: 10.1038/280168a0

Lehto T., Zwijazek J.J., 2011. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21: 71-90. DOI: 10.1007/s00572-010-0348-9

Lindner M., Garcia-Gonzalo J., Kolström M., Green T., Reguera R., Maroschek M., Seidl R., Lexer M.J., Netherer S., Schopf A., Kremer A., Delzon S., Barbati A., Marchetti M., Corona P., 2008. Impact of Climate Change ofEuropeanForestsand Options for Adaptation. Report to the European Commision Directorate-General for Agriculture and Rural Development, 173 p.

Lorenc F., 2012. Vliv sucha na růst mykorhiz u smrku ztepilého. Diplomová práce. Česká zemědělská univerzita v Praze, Fakulta životního prostředí, Praha, 41 p.

Madji H., 2001. Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiology 21: 1057-1061. DOI: 10.1093/treephys/21.14.1057

Mehus H., 1986. Fruit body production of macrofungi in some North Norwegian forest types. Nordic Journal of Botany 6: 679-702. DOI: 10.1111/j.1756-1051.1986.tb00468.x

Mejstřík V., 1988. Mykorhizní symbiózy. Academia, Praha, 150 p.

Mejstřík V., 1989. Ectomycorrhizas and forest decline. Agriculture, Ecosystems and Environmet 28. In: Mejstřík V. (ed.): Ecological and Applied Aspects of Ecto- and Endomycorrhizal Associations 1, Praha: Academia: 325-337.

Mérian P., Lebourgeios F., 2011. Size-mediated climate-growth relationships in temperate forests: A multi-species analysis. ForestEcology and Management, 261: 1382-1391. DOI: 10.1016/j.foreco.2011.01.019

Möttönen M., Aphalo P.J., Lehto T., 2001. Role of boron in drought resistance in Norwayspruce (Picea abies) seedlings. Tree Physiology 21 (10): 673-681. DOI: 10.1093/treephys/ 21.10.673

Möttönen M., Lehto T., Rita H., Aphalo P.J., 2004. Recovery of Norway spruce (Picea abies) seedlings from repeated drought as affected by boron nutrition. Trees 19: 213-223. DOI: 10.1007/s00468-004-0384-1

Nilsen P., BørjaI., Knutsen H., Brean R., 1998. Nitrogen and drought effects on ectomycorrhizae of Norway spruce (Picea abies L. (Karst.)). Plant and Soil 198: 179-184. DOI: 10.1023/A:1004399303192

NowotnyI., Dähne J., Klingelhöfer D., Rothe G.M., 1996. Effect of artificial soil acidification and liming on growth and nutrient status of mycorrhizal roots of Norway spruce (Picea abies (L.) Karst.). Plant and Soil 199: 29–40. DOI: 10.1023/A:1004265511068

Økland, B., Berryman, A., 2004. Resource dynamic plays a key role in regional fluctuation of the spruce bark beetle Ips typographus. Agricultural and ForestEntomology, 6: 141–146. DOI: 10.1111/j.1461-9555.2004.00214.x

Palátová E., 2004. Effect of increased nitogen depositions and drought stress on the development of young Norway spruce Picea abies (L.) Karst. Stands. Dendrobiology 51: 41-45.

Pena R., Simon J., Rennenberg H., Polle A., 2013. Ectomycorrhiza affect architecture and nitrogen partitioning of beech (Fagus sylvatica L.) seedlings under shade and drought. Environmental and Experimental Botany 87: 207-217. DOI: 10.1016/j.envexpbot. 2012.11.005

Pešková V., Fellner R., Landa J., 2007. Nové údaje o ektotrofní stabilitě krkonošských horských smrčin: srovnání období let 1991-1995 a2001 - 2005. In: Štursa J. Knapik R. (eds.), Geoekologické problémy Krkonoš. Sborník mezinárodní vědecké konference, říjen 2006, Svoboda nad Úpou Opera Corcontica, 44(2): 407 – 414.

Pešková V., Landa J., Soukup F., 2011. Findings regarding ectotrophic stability of Norway spruceforestofKrkonošeand Orlické Mts. based on mycorrhiza studies. Journal ofForestScience, 57 (11): 500-513.

Pešková, V., Soukup, F., 2006. Houby vázané na kořenové systémy: metodické přístupy ke studiu. Review. Zprávy lesnického výzkumu, 51 (4): 279-286.

Pešková V., 2008. Houby na kořenech lesních dřevin. Mykorhizy. Lesnická práce, 87 (12): 4 p.

Pešková V., Soukup F., 2009. Srovnání rozvoje mykorhiz na krytých a exponovaných stanovištích horských smrčin. Zprávy lesnického výzkumu, 54 (3): 223-230.

Pešková V., Landa J., Modlinger R., 2013. Long term observation of mycorrhizal status and above-ground fungi fruiting body production in oak forest. Dendrobiology, 69: 99-110. DOI: 10.12657/denbio.069.011

Peterson R.L., Massicotte H.B., Melville H., 2004. Mycorrhizas: Anatomy and Cell Biology. –Ottawa, NRC Research Press: 173 p.

Pineda A., Dicke M., Pieterse C.M.J., Pozo M.J., 2013. Beneficial microbes in a changing environment: are they always helping plants to deal with insects? Functional Ecology, 27: 574-586. DOI: 10.1111/1365-2435.12050

Rosling A., Landeweert R., Lindahl B.D., Larsson K.-H., Kuyper T.W., Taylor A.F.S., Finlay R.D., 2003. Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytologist, 159: 775-783. DOI: 10.1046/j.1469-8137.2003.00829.x

Salerni E., Laganà A., Perini C., Loppi S., De Dominicis V., 2002. Effects of temperature and rainfall on fruiting of macrofungi in oak forests of the Mediterranean area. IsraelJournal Plant Sciences, 50: 189-198. DOI: 10.1560/GV8J-VPKL-UV98-WVU1

Scattolin L., Montecchio L., Mosca E., Agerer R., 2008. Vertical distribution of ectomycorrhizal comunity in the top soil of Norway spruce stands. European Journal of ForestResearch, 127: 347-357. DOI: 10.1007/s10342-008-0209-7

Shi L., Guttenberger M., KottkeI., Hampp R., 2002. The effect of drought on mycorrhizas of Beech (Fagus sylvatica L.): ganges in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza, 12 (6): 303-311. DOI: 10.1007s00572-002-0197-2

Šrámek V., Soukup F., Slodičák M., Balcar V., Hellebrantová K., Lachmanová Z., Novák J., Novotný R., Pešková V., Vícha Z., Vejpustková M.,Vortelová L., Lomský B., 2009. Chřadnutí lesních porostů na LS Jablunkov – určení komplexu příčin poškození a návrh opatření na revitalizaci lesa. Grantová služba LČR – 05/09: 100 p.

Taskinen O., Ilvesniemi H., Kuuluvainen T., Leinonen K., 2003. Response of fine roots to an experimental gap in a boreal Picea abies forest. Plant and Soil, 255: 503-512. DOI: 10.1023/ A:1026077830097


No Supplimentary Material available for this article.
No metrics available for this article.