A case study on forest practitioners’ perspectives on climate extremes: consensus on impacts and conflicts in responses
DOI:
https://doi.org/10.15287/afr.2025.3981Abstract
Climate extremes present significant challenges to the German forestry sector, impacting forest ecosystems, biodiversity, and overall forest health. This study examines the perspectives of forest practitioners regarding the impacts of climate extremes, such as drought, heat waves, storms, and heavy rainfall, as well as their proposed responses and potential conflicts. Utilizing a transdisciplinary approach, semi-structured interviews were conducted with 28 forest practitioners. The findings reveal that over 89% of practitioners acknowledge drought as the most significant climate extreme affecting forests, highlighting its detrimental impacts on tree health and forest ecosystems. Additionally, storm events are recognized as a serious threat, particularly concerning economic losses and forest damage. Notably, two divergent management approaches were identified: those prioritizing wood production (FWP) tend to focus on economic viability and timber management strategies, while those emphasizing protection and recreation (FPR) concentrate on ecological sustainability and biodiversity conservation. Both groups agree on the importance of promoting mixed and multi-layered forest stands to enhance resilience to climate extremes. These insights underscore the need for integrating diverse perspectives in forest management to effectively address the complexities of climate change, facilitating collaborative approaches that balance ecological, economic, and social objectives in forestry practices.References
Allen C.D., Breshears D.D., McDowell N.G., 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8): 1-55. https://doi.org/10.1890/ES15-00203.1
Ammer C., Fichtner A., Fischer A., Gossner M.M., Meyer P., ... & Wagner S., 2018. Key ecological research questions for Central European forests. Basic and Applied Ecology 32: 3-25. https://doi.org/10.1016/j.baae.2018.07.006
Anderegg W.R.L., Chegwidden O.S., Badgley G., Trugman A.T., Cullenward D., Abatzoglou J.T., Hicke J.A., Freeman J., Hamman J.J., 2022. Future climate risks from stress, insects and fire across US forests. Ecology Letters 25(6): 1510-1520. https://doi.org/10.1111/ele.14018
Bammer G., O’Rourke M., O’Connell D., Neuhauser L., Midgley G., … & Richardson G.P., 2020. Expertise in research integration and implementation for tackling complex problems: when is it needed, where can it be found and how can it be strengthened? Palgrave Communications 6: 5. https://doi.org/10.1057/s41599-019-0380-0
Bastos A., Orth R., Reichstein M., Ciais P., Viovy N., … & Sitch S., 2021. Vulnerability of European ecosystems to two compound dry and hot summers in 2018 and 2019. Earth System Dynamics 12, 1015–1035. https://doi.org/10.5194/esd-12-1015-2021
Beck-O’Brien M., Egenolf V., Winter S., Zahnen J., Griesshammer N., 2022. Everything from wood–The resource of the future or the next crisis. How footprints, benchmarks and targets can support a balanced bioeconomy transition. WWF Germany.
Bevacqua E., Rakovec O., Schumacher D. L., Kumar R., Thober S., Samaniego L., Seneviratne S. I., Zscheischler J., 2024. Direct and lagged climate change effects intensified the 2022 European drought. Nature Geoscience 17, 1100–1107. https://doi.org/10.1038/s41561-024-01559-2
Bergmann M., Brohmann B., Hofmann E., Loibl M.C., Rehaag R., Schramm E., Voß J.P., 2005. Quality criteria for transdisciplinary research. A guide for the formative evaluation of research projects. Institute for Social-Ecological Research (ISOE), Frankfurt am Main.
Bergmann M., Jahn T., Knobloch T., Krohn W., Pohl C., Schramm E., 2012. Methods for transdisciplinary research: A primer for practice. Campus, Frankfurt.
Biggs R., de Vos A., Preiser R. Clements H., Maciejewski K., Schlüter M., 2021. The Routledge handbook of research methods for social-ecological systems. Routledge, London.
Bindewald A., Brundu G., Schueler S., Starfinger U., Bauhus J., Lapin K., 2021. Site-specific risk assessment enables trade-off analysis of non-native tree species in European forests. Ecology and Evolution 11(24): 17663–17673. https://doi.org/10.1002/ece3.8407
Błońska E., Lasota J., Tullus A., Lutter R., Ostonen I., 2019. Impact of deadwood decomposition on soil organic carbon sequestration in Estonian and Polish forests. Annals of Forest Science 76, 102. https://doi.org/10.1007/s13595-019-0889-9.
BMEL, 2020. Forest Strategy 2020: Sustainable Forest Management – An Opportunity and a Challenge for Society. Federal Ministry of Food and Agriculture and Consumer Protection. https://www.bmel.de/SharedDocs/Downloads/EN/Publications/ForestStrategy2020.pdf?__blob=publicationFile&v=4 (last access: 29 November 2024).
BMEL, 2022. Waldstrategie 2050: Nachhaltige Waldbewirtschaftung – Herausforderungen und Chancen für Mensch, Natur und Klima (Forest Strategy 2050: Sustainable forest management - challenges and opportunities for people, nature and the climate). Federal Ministry of Food and Agriculture. https://www.bmel.de/SharedDocs/Downloads/DE/_Wald/Waldstrategie2050.html (last access: 29 November 2024).
Bogunović S., Bogdan S., Lanšćak M., Ćelepirović N., Ivanković M., 2020. Use of a common garden experiment in selecting adapted beech provenances for artificial stand restoration. South-east European Forestry: SEEFOR 11(1): 1-10. https://doi.org/10.15177/seefor.20-07
Bolte,A., Ammer C., Löf M., Madsen P., Nabuurs G.-J., Schall P., Spathelf P., Rock J., 2009. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scandinavian Journal of Forest Research 24, 473-482. https://doi.org/10.1080/02827580903418224
Bourke R., Yousefpour R., Hanewinkel M., 2023. Under storm risk, economic productivity of Norway spruce (Picea abies (L.) H. Karst) in monoculture shows sharper decline than in mixture with European beech (Fagus sylvatica L.). Annals of Forest Science, 80(1), 19. https://doi.org/10.1186/s13595-023-01182-y
Brang P., Spathelf P., Larsen J.B., Bauhus J., Bončina A., … & Kerr G., 2014. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry: An International Journal of Forest Research 87(4): 492–503. https://doi.org/10.1093/forestry/cpu018.
Bréda N., Huc R., Granier A., Dreyer E., 2006. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes, and long-term consequences. Ann. For. Sci. 63(6): 625–644. https://doi.org/10.1051/forest:2006042.
Brinkmann C., Bergmann M., Huang-Lachmann J., Rödder S., Schuck-Zöller S., 2015. Zur Integration von Wissenschaft und Praxis als Forschungsmodus - Ein Literaturüberblick (On the integration of science and practice as a research mode ─ a literature review). Report 23. Climate Service Centre Germany.
https://pure.mpg.de/rest/items/item_2129466/component/file_2465066/content (last access: 3 December 2024).
Brunner I., Herzog C., Dawes M.A., Arend M., Sperisen C., 2015. How tree roots respond to drought. Frontiers in Plant Science 6(547): 1-15. https://doi.org/10.3389/fpls.2015.00547
Bülow K., Bauer S., Steuri B., Groth M., Knutzen F., Rechid D., 2024. Stadtwald Karlsruhe im Klimawandel - Der Wald heute und in Zukunft (Stadtwald Karlsruhe in climate change - The forest today and in the future). Climate Service Center Germany (GERICS). https://doi.org/10.5281/zenodo.11473737.
BWI 4, 2024. https://www.bundeswaldinventur.de/fileadmin/Projekte/2024/bundeswaldinventur/Downloads/BWI-2022_Broschuere_bf-neu_01.pdf. (last access: 5 December 2024).
Chave J., Coomes D., Jansen S., Lewis S.L., Swenson N.G., Zanne A.E. 2009. Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x.
Fekete A., Nehren U., 2023. Assessment of social vulnerability to forest fire and hazardous facilities in Germany. International Journal of Disaster Risk Reduction 87: 103562. https://doi.org/10.1016/j.ijdrr.2023.103562
Cardell M. F., Amengual A., Romero R., Ramis C., 2020. Future extremes of temperature and precipitation in Europe derived from a combination of dynamical and statistical approaches. International Journal of Climatology 40(11): 4800-4827. https://doi.org/10.1002/joc.6490.
Chivulescu Ș., Pitar D., Apostol B., Leca Ș., Badea O., 2022. Importance of dead wood in virgin forest ecosystem functioning in Southern Carpathians. Forests 13(3): 409. https://doi.org/10.3390/f13030409
Ciccarino A., Martins A., Ferreira J., 2023. A bibliometric review of stakeholders' participation in sustainable forest management. Canadian Journal of Forest Research, 53(4). https://doi.org/10.1139/cjfr-2022-032
COM, 2006. Communication from the Commission to the Council and the European Parliament on an EU Forest Action Plan {SEC(2006) 748}. Brussels, Commission of the European Communities.
Cuervo-Alarcon L., Arend M., Müller M., Sperisen C., Finkeldey R., Krutovsky K. V., 2018. Genetic variation and signatures of natural selection in populations of European beech (Fagus sylvatica L.) along precipitation gradients. Tree Genetics & Genomes 14, 84. https://doi.org/10.1007/s11295-018-1297-2
Defila R., Di Giulio A., 2019. Transdisziplinär und transformativ forschen. Band 2: Eine Methodensammlung (Transdisciplinary and transformative research, Volume 2: A collection of methods). Springer VS, Wiesbaden. http://library.oapen.org/handle/20.500.12657/23144
Diers M., Leuschner C., Dulamsuren C., Schulz T.C., Weigel R., 2024. Increasing winter temperatures stimulate Scots pine growth in the North German lowlands despite stationary sensitivity to summer drought. Ecosystems, 27, 428–442. https://doi.org/10.1007/s10021-023-00897-3
Dudek T., 2016. Recreational potential of forests as an indicator of leisure related services provided by forest ecosystems. Dissertation, Faculty of Biology and Agriculture, University of Rzeszow, Rzeszów Poland, 164 p.
Eggers J., Räty M., Öhman K., Snäll T., 2020. How well do stakeholder-defined forest management scenarios balance economic and ecological forest values? Forests 11(1): 86. https://doi.org/10.3390/f11010086
Elsen P.R., Monahan W.B., Dougherty E.R., Merenlender A. M., 2020. Keeping pace with climate change in global terrestrial protected areas. Science Advances, 6(25), eaay0814. https://doi.org/10.1126/sciadv.aay0814
EC, Directorate-General for Research and Innovation, 2015. A European research and innovation roadmap for climate services. Publications Office of the European Union. https://data.europa.eu/doi/10.2777/702151 (last access: 29 November 2024).
Falk D.A., van Mantgem P.J., Keeley J.E., Gregg R.M., Guiterman C.H., Tepley A.J., Young D.J.N., Marshall L.A., 2022. Mechanisms of forest resilience. Forest Ecol Manag. 512: 120129. https://doi.org/10.1016/j.foreco.2022.120129
FAO, ILO, UN, 2023. Occupational safety and health in the future of forestry work. Forestry Working Paper 37. https://doi.org/10.4060/cc6723en (last access: 29 November 2024).
Fekete A., Nehren U., 2023. Assessment of social vulnerability to forest fire and hazardous facilities in Germany. International Journal of Disaster Risk Reduction 87, 103562. https://doi.org/10.1016/j.ijdrr.2023.103562
Feser F., Barcikowska M., Krueger O., Schenk F., Weisse R., Xia L., 2015. Storminess over the North Atlantic and northwestern Europe—A review. Quarterly Journal of the Royal Meteorological Society, 141(687), 350–382. https://doi.org/10.1002/qj.2364
FFA, 1975. https://www.gesetze-im-internet.de/bwaldg/BJNR010370975.html (last access: 29 November 2024).
Floriancic M.G., Allen S.T., Meier R., Truniger L., Kirchner J.W., Molnar P., 2022. Potential for significant precipitation cycling by forest-floor litter and deadwood. Ecohydrology 15(8): e2493. https://doi.org/10.1002/eco.2493
Forest Europe, 2020. https://foresteurope.org/wp-content/uploads/2016/08/SoEF_2020.pdf (last access: 10 December 2024).
Forzieri G., Girardello M., Ceccherini G., Spinoni J., Feyen L., Hartmann H., Cescatti A., 2021. Emergent vulnerability to climate-driven disturbances in European forests. Nature Communications 12(1): 1081. https://doi.org/10.1038/s41467-021-21399-7.
Frank D. S., 2021. Review of the direct and indirect effects of warming and drought on scale insect pests of forest systems, Forestry 94(2): 167–180. https://doi.org/10.1093/forestry/cpaa033
Fraser E.D.G., Dougill A.J., Mabee W.E., Reed M., McAlpine P., 2006. Bottom up and top down: Analysis of participatory processes for sustainability indicator identification as a pathway to community empowerment and sustainable environmental management. Journal of Environmental Management 78(2): 114-127. https://doi.org/10.1016/j.jenvman.2005.06.003
Gárate-Escamilla H., Hampe A., Vizcaíno-Palomar N., Robson T.M., Benito Garzón M., 2019. Range-wide variation in local adaptation and phenotypic plasticity of fitness-related traits in Fagus sylvatica and their implications under climate change. Global Ecology and Biogeography 28(9): 1442–1455. https://doi.org/10.1111/geb.12936.
Gardiner B., 2021. Wind damage to forests and trees: a review with an emphasis on planted and managed forests. Journal of Forest Research 26(4): 248-266. https://doi.org/10.1080/13416979.2021.1940665
García-García I., Méndez-Cea B., Martín-Gálvez D., Seco J.I., Gallego F.J., Linares J.C., 2022. Challenges and perspectives in the epigenetics of climate change-induced forests decline. Frontiers in Plant Science, 12, 797958. https://doi.org/10.3389/fpls.2021.797958
Gette I.G., Pakharkova N.V., Kosov I.V., Bezkorovaynaya I.N., 2020. Influence of high-temperature convective flow on viability of Scots pine needles (Pinus sylvestris L.). Journal of Forest Research, 31, 1489–1497. https://doi.org/10.1007/s11676-019-00990-1
Gliksman D., Averbeck P., Becker N., Gardiner B., Goldberg V., … & Franzke C.L.E., 2023. A European perspective on wind and storm damage – from the meteorological background to index-based approaches to assess impacts. Natural Hazards and Earth System Sciences 23(6): 2171-2201. https://doi.org/10.5194/nhess-23-2171-2023
Gregow H., Laaksonen A., Alper M.E., 2017. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Scientific Reports 7. https://doi.org/10.1038/srep46397
Gritten D., Saastamoinen O., Sajama S., 2009. Ethical analysis: A structured approach to facilitate the resolution of forest conflicts. Forest Policy and Economics 11(8): 555-560. https://doi.org/10.1016/j.forpol.2009.07.003
Grossiord C., Bachofen C., Gisler J., Mas E., Vitasse Y., Didion-Gency M., 2022. Warming may extend tree growing seasons and compensate for reduced carbon uptake during dry periods. Journal of Ecology 110(4): 937-946. https://doi.org/10.1111/1365-2745.13892.
Grünig M., Seidl R., Senf C., 2022. Increasing aridity causes larger and more severe forest fires across Europe. Global Change Biology 28(6): 1844–1856. https://doi.org/10.1111/gcb.16547
Grünzweig J. M., De Boeck H. J., Rey A., Santos M. J., Adam O., ... & Yakir D., 2022. Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world. Nature Ecology & Evolution 6: 1064–1076. https://doi.org/10.1038/s41559-022-01819-x
Haberstroh S., Werner C., Grün M., Kreuzwieser J., Seifert T., Schindler D., Christen A., 2022. Central European 2018 hot drought shifts Scots pine forest to its tipping point. Plant Biology, 24(7), 1186-1197. https://doi.org/10.1111/plb.13455
Hadorn G.H., Biber-Klemm S., Grossenbacher-Mansuy S., Hoffmann-Riem H., Joye D., Pohl C., Wiesmann U., Zemp E., 2008. The emergence of transdisciplinarity as a form of research. In Hadorn G.H. et al. Handbook of Transdisciplinary Research. Springer, 19-39. https://doi.org/10.1007/978-1-4020-6699-3
Hall J., Gaved M. Sargent J., 2021. Participatory Research Approaches in Times of Covid-19: A Narrative Literature Review. International Journal of Qualitative Methods 20: 1-15. https://doi.org/10.1177/16094069211010087
Hammond W.M., Williams A. P., Abatzoglou J.T., Adams H.D., Klein T., López R., Sáenz-Romero C., Hartmann H., Breshears D.D., Allen C.D., 2022. Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests. Nature Communications, 13, 1761. https://doi.org/10.1038/s41467-022-29429-5
Hanewinkel M., Hummel S., Albrecht A., 2011. Assessing natural hazards in forestry for risk management: a review. European Journal of Forest Research 130(3): 329-351. https://doi.org/10.1007/s10342-010-0392-1
Hanewinkel M., Lessa Derci Augustynczik A., Yousefpour R., 2022. Climate-smart forestry case study: Germany. In Hetemäki, L., Kangas, J., Peltola, H. (eds.). Forest Bioeconomy and Climate Change. Springer International Publishing, Cham, 197-209. https://doi.org/10.1007/978-3-030-99206-4
Harvey J.A., Tougeron K., Gols R., Heinen R., Abarca M., … & Chown S.L., 2023. Scientists' warning on climate change and insects. Ecological Monographs 93(1): e1553. https://doi.org/10.1002/ecm.1553.
Hetemäki L., Hurmekoski E., 2016. Forest Products Markets under Change: Review and Research Implications. Current Forestry Reports 2(3): 177–188. https://doi.org/10.1007/s40725-016-0042-z.
Hlásny T., Krokene P., Liebhold A., Montagné-Huck C., Müller J., … & Viiri H., 2019. Living with bark beetles: impacts, outlook and management options. No. 8. European Forest Institute.
Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M. (2021). Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490, 119075. https://doi.org/10.1016/j.foreco.2021.119075
Hoffmann-Riem H., Biber-Klemm S., Grossenbacher-Mansuy W., Hirsch Hadorn G., Joye D., Pohl C., Wiesmann U., Zemp E., 2008. Idea of the handbook. In Hadorn G. H., et al. (Eds.). Handbook of Transdisciplinary Research. Springer, 3-18.
IPCC, 2021. Summary for Policymakers. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., et al. (eds.), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3–32. https://doi.org/10.1017/9781009157896.001
ILO, 2019. https://www.ilo.org/sites/default/files/wcmsp5/groups/public/@ed_dialogue/@sector/documents/publication/wcms_886926.pdf (last access: 5 December 2024).
Jactel H., Bauhus J., Boberg J., Bonal D., Castagneyrol B., … & Brockerhoff E.G., 2017. Tree diversity drives forest stand resistance to natural disturbances. Current Forestry Reports 3: 223–243. https://doi.org/10.1007/s40725-017-0064-1
Jactel H., Koricheva J., Castagneyrol B, 2019. Responses of forest insect pests to climate change: Not so simple. Current Opinion in Insect Science 35 (2019): 103-108. https://doi.org/10.1016/j.cois.2019.07.010
Jacobs K., Jonard M., Muys B., Ponette Q., 2022. Shifts in dominance and complementarity between sessile oak and beech along ecological gradients. Journal of Ecology 110(6): 1045-1056. https://doi.org/10.1111/1365-2745.13958
Jahn T., Bergmann M. Florian K., 2012. Transdisciplinarity: Between mainstreaming and marginalization. Ecological Economics 79: 1-10. https://doi.org/10.1016/j.ecolecon.2012.04.017
Jakobsson R., Olofsson E., Ambrose-Oji B., 2021. Stakeholder perceptions, management and impacts of forestry conflicts in southern Sweden. Scandinavian Journal of Forest Research 36(1): 68–82. https://doi.org/10.1080/02827581.2020.1854341
James K.R., Dahle G.A., Grabosky J., Kane B., Detter A., 2014. Tree biomechanics literature review: Dynamics. Arboriculture & Urban Forestry, 40: 1-15.
Jones M.W., Abatzoglou J.T., Veraverbeke S., Andela N., Lasslop G., et al., 2022. Global and regional trends and drivers of fire under climate change. Reviews of Geophysics, 60(1), e2020RG000726.
Keenan R.J., 2015. Climate change impacts and adaptation in forest management: A review. Annals of Forest Science 72(2): 145-167. https://doi.org/10.1007/s13595-014-0446-5
Kijowska-Oberc J., Staszak A.M., Kamiński J., Ratajczak E., 2020. Adaptation of forest trees to rapidly changing climate. Forests 11(2): 123. https://doi.org/10.3390/f11020123
Klein D., Wolf C., Schulz C., Weber-Blaschke G., 2015. 20 years of life cycle assessment (LCA) in the forestry sector: State of the art and a methodical proposal for the LCA of forest production. International Journal of Life Cycle Assessment, 20(4), 556–575. https://doi.org/10.1007/s11367-015-0847-1
Knauf M., 2024. Unsichere Zeiten. Delphistudie zur Entwicklung der deutschen Forst- und Holzwirtschaft bis 2040. Studie im Rahmen des Waldklimafondsprojekts DIFENS. Ergebnisbericht, Juli 2024, Bielefeld.
Knutzen F., Dulamsuren C., Meier I.C., Leuschner C. 2017. Recent climate warming-related growth decline impairs European beech in the center of its distribution range. Ecosystems, 20(8), 1494–1511. https://doi.org/10.1007/s10021-017-0128-x
Knutzen F., Averbeck P., Barrasso C., Bouwer L.M., Gardiner B., & Gliksman D., 2025. Impacts on and damage to European forests from the 2018–2022 heat and drought events. Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025
Knoke T., Ammer C., Stimm B., Mosandl R., 2008. Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. European Journal of Forest Research 127: 89–101. https://doi.org/10.1007/s10342-007-0186-2
Kohler M., Pyttel P., Kuehne C., Modrow T., Bauhus J., 2020. On the knowns and unknowns of natural regeneration of silviculturally managed sessile oak (Quercus petraea (Matt.) Liebl.) forests—a literature review. Annals of Forest Science 77: 101. https://doi.org/10.1007/s13595-020-00998-2
Köpsel V., de Moura Kiipper G., Peck MA., 2021. Stakeholder engagement vs. social distancing—how does the Covid-19 pandemic affect participatory research in EU marine science projects? Marit. Stud. 2021. 20(2): 189-205.
Kramer K., Brang P., Bachofen H., Bugmann H., Wohlgemuth T., 2014. Site factors are more important than salvage logging for tree regeneration after wind disturbance in Central European forests. Forest Ecology and Management, 331, 116-128. https://doi.org/10.1016/j.foreco.2014.08.002
Krohn W., 2008. Epistemische Qualitäten transdisziplinärer Forschung (Epistemic qualities of transdisciplinary research). In Bergmann M., Schramm E. (Eds.). Transdisziplinäre Forschung: Integrative Forschungsprozesse verstehen und bewerten. Campus, 39-68.
Kujala J., Sachs S., Leinonen H., Heikkinen A., Laude D., 2022. Researching stakeholder relationships: A systematic literature review and paths for future studies. Business & Society 61(6): 1616-1650.
Lam D.P.M., Freund M.E., Kny J., Marg O., Mbah M., Theiler L., Bergmann M., Brohmann B., Lang D.J., Schäfer M., 2021. Transdisciplinary research: towards an integrative perspective. GAIA 30/4: 243-249.
Lang D.J., Wiek A., Bergmann M., Stauffacher M., Martens P., Moll P., 2012. Transdisciplinary research in sustainability science: practice, principles, and challenges. Sustainability Science 7(1): 25-43.
Langer G.J., Bußkamp J., 2023. Vitality loss of beech: a serious threat to Fagus sylvatica in Germany in the context of global warming. J Plant Dis Prot 130, 1101–1115. https://doi.org/10.1007/s41348-023-00743-7
Leskinen P., Cardellini G., González-García S., Hurmekoski E., Sathre R., Seppälä J., Verkerk P.J. 2018. Substitution effects of wood-based products in climate change mitigation (From Science to Policy 7). European Forest Institute. https://doi.org/10.36333/fs07
Leuschner C., 2020. Drought response of European beech (Fagus sylvatica L.)—A review. Perspectives in Plant Ecology, Evolution and Systematics 47, 125576. https://doi.org/10.1016/j.ppees.2020.125576
Liang J., Crowther T.W., Picard N., Wiser S., Zhou M., Alberti G., Reich P.B. 2016. Positive biodiversity–productivity relationship predominant in global forests. Science, 354(6309), aaf8957. https://doi.org/10.1126/science.aaf8957.
Lindner M., Fitzgerald J.B., Zimmermann N.E., Reyer C., Delzon S., … & Hanewinkel M., 2014. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management 146: 69-83.
Logmani-Aßmann J., Lindahl K.B., Krott M., Burns S.L., Giessen L., 2021. Forest set-aside policy for international biodiversity targets? Obstructive bureaucratic territoriality in Germany and Sweden. Int. For. Rev., 23(4): 448-461. https://doi.org/10.1505/146554821834777251
Lupp G., Förster B., Kantelberg V., Markmann T., Naumann J., Honert C., Koch M., Pauleit S., 2016. Assessing the Recreation Value of Urban Woodland Using the Ecosystem Service Approach in Two Forests in the Munich Metropolitan Region. Sustainability 8 (11).
Luyssaert S., Schulze E.-D., Börner A., Knohl A., Hessenmöller D., Law B.E., Ciais, P., Grace, J. 2008. Old-growth forests as global carbon sinks. Nature, 455(7210), 213–215. https://doi.org/10.1038/nature07276.
Madruga de Brito M., Kuhlicke C., Marx A., 2020. Near-real-time drought impact assessment: a text mining approach on the 2018/19 drought in Germany. Environmental Research Letters 15(10): 1040a9. https://doi.org/10.1088/1748-9326/aba4ca
Martinez del Castillo E., Zang C.S., Buras A., Hacket-Pain A., Esper J., … & de Luis M., 2022. Climate-change-driven growth decline of European beech forests. Communications Biology 5(1), 163. https://doi.org/10.1038/s42003-022-03107-3
Mason W.L., Diaci J., Carvalho J., Valkonen S., 2022. Continuous cover forestry in Europe: usage and the knowledge gaps and challenges to wider adoption. Forestry: An International Journal of Forest Research, 95(1), 1–12. https://doi.org/10.1093/forestry/cpab038
Mauser W., Klepper G., Rice M., Schmalzbauer B.S., Hackmann H., Leemans R., Moore H., 2013. Transdisciplinary global change research: the co-creation of knowledge for sustainability. Current Opinion in Environmental Sustainability 5 (3-4): 420-431. https://doi.org/10.1016/j.cosust.2013.07.001
McDowell N.G., Sapes G., Pivovaroff A., Adams H.D., Allen C.D., et al., 2022. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment 3: 294-308. https://doi.org/10.1038/s43017-022-00272-1
Meyer M., Rathmann, J. Schulz, C., 2019. Spatially-explicit mapping of forest benefits and analysis of motivations for everyday-life’s visitors on forest pathways in urban and rural contexts. Landscape and urban planning 185: 83-95.
Miryeganeh, M., Armitage, D. W., 2025. Epigenetic responses of trees to environmental stress in the context of climate change. Biological Reviews, 100(1), 131-148. https://doi.org/10.1111/brv.13132
Moreira F., Viedma O., Arianoutsou M., Curt T., Koutsias N., Rigolot E., Barbati A., Corona P., Vaz P., Xanthopoulos G., Mouillot F., Bilgili E., 2011. Landscape–wildfire interactions in southern Europe: Implications for landscape management. Journal of Environmental Management 92(10): 2389-2402. https://doi.org/10.1016/j.jenvman.2011.06.028
Nabuurs, G.-J., Delacote, P., Ellison, D., Hanewinkel, M., Hetemäki, L., Lindner, M. (2017). By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests, 8(12), 484. https://doi.org/10.3390/f8120484
NBS, 2021. https://www.bmuv.de/download/rechenschaftsbericht-2021-der-bundesregierung-zur-umsetzung-der-nationalen-strategie-zur-biologischen-vielfalt (last access 4 December 2024).
Netherer S., Matthews B., Katzensteiner K., Blackwell E., Henschke P., Hietz P., Pennerstorfer J., Rosner S., Kikuta S., Schume H., Schopf A., 2015. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytologist 205(3): 1128-1141. https://doi.org/10.1111/nph.13166
Nikolakis W., Innes J.L. (Eds.), 2020. The wicked problem of forest policy: a multidisciplinary approach to sustainability in forest landscapes. Cambridge University Press.
OECD, 2020. Adressing societal challenges using transdisciplinary research. OECD Science technology and industry policy papers, June 2020, No 88, DSTI/STP/GSF(2020)4/FINAL.
Paquette A., Messier C. 2011. The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography, 20(1), 170–180. https://doi.org/10.1111/j.1466-8238.2010.00592.x
Petkova K., Molle E., Mustafova A., 2022. Survival and growth of common beech (Fagus sylvatica L.) provenances in North-Eastern Bulgaria. Silva Balcanica 23(2): 5-17. 10.3897/silvabalcanica.22.e95109.
Peltola H., Gardiner B., Nicoll B., 2013. Mechanics of wind damage. Agric For Meteorol, 151, 328-344.
Pohl C., Hadorn G.H., 2006. Gestaltungsprinzipien für die transdisziplinäre Forschung (Design principles for transdisciplinary research). Oekom Verlag, München.
Parajuli R., Markwith S.H., 2023. Quantity is foremost but quality matters: A global meta-analysis of correlations of dead wood volume and biodiversity in forest ecosystems. Biological Conservation 283: 110100. https://doi.org/10.1016/j.biocon.2023.110100
Pretzsch H., Forrester D.I., Bauhus J., 2017. Mixed-species forests. Ecology and management. Springer, Berlin, 653 p. https://doi.org/10.1007/978-3-662-54553-9
Priestley M.D.K., Stephenson D.B., Scaife A.A., Bannister D., Allen C.J.T., Wilkie D., 2024. Forced trends and internal variability in climate change projections of extreme European windstorm frequency and severity. Quarterly Journal of the Royal Meteorological Society. First published: 03 October 2024. https://doi.org/10.1002/qj.4849
Pulkrab K., Sloup M., Zeman M., 2014. Economic impact of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) production in the Czech Republic. Journal of Forest Science 60(7): 297-306.
Reinmann A.B., Hutyra L.R., 2016. Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests. Proceedings of the National Academy of Sciences of the United States of America 114(1): 107–112. https://doi.org/10.1073/pnas.1612369114
Renn O., 2021. Transdisciplinarity: Synthesis towards a modular approach. Futures 130 (2021) 102744. https://doi.org/10.1016/j.futures.2021.102744
Rosenkranz L., Arnim G., Englert H., Husmann K., Regelmann C., Roering H.W., Rosenberger R., Seintsch B., Dieter M., Möhring B., 2023. Alternative forest management strategies to adapt to climate change: An economic evaluation for Germany. Thünen Working Paper No. 219. Johann Heinrich von Thünen-Institut, Braunschweig.
Rukh S., Sanders T.G.M., Krüger I., Schad T., Bolte A., 2023. Distinct responses of European beech (Fagus sylvatica L.) to drought intensity and length—A review of the impacts of the 2003 and 2018–2019 drought events in Central Europe. Forests 14(2): 248. https://doi.org/10.3390/f14020248
Rybar J., Bosela M., 2023. Trade-offs or complementarity between biomass production and biodiversity in European forests: a review. Cent Eur For J. 69: 201–213. https://doi.org/10.2478/forj-2023-0019
Salzman J., Bennett G., Carroll N., Goldstein A., Jenkins M. 2018. The global status and trends of payments for ecosystem services. Nature Sustainability, 1(3), 136–144. https://doi.org/10.1038/s41893-018-0033-0
Schäfer M., Nagy E., Kny J., 2024. Fostering Reflective Impact Orientation in Transdisciplinary Research–A Multi-Method Workshop Format. MethodsX 13 (102795).
Scharnweber T., Manthey M., Criegee C., Bauwe A., Schröder C., Wilmking M., 2011. Drought matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management 262(6): 947-961. https://doi.org/10.1016/j.foreco.2011.05.026
Schauwecker S., Gascón E., Park S., Ruiz-Villanueva V., Schwarb M., Sempere-Torres D., Stoffel M., Vitolo C., Rohrer M., 2019. Anticipating cascading effects of extreme precipitation with pathway schemes - Three case studies from Europe. Environmental International 128: 480-489. https://doi.org/10.1016/j.envint.2019.02.072
Schelhaas M.J., Nabuurs G.J., Schuck A., 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology 9(11): 1620-1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x
Schmied G., Hilmers T., Uhl E., Pretzsch H., 2022. The past matters: Previous management strategies modulate current growth and drought responses of Norway spruce (Picea abies H. Karst.). Forests 13(2): 243. https://doi.org/10.3390/f13020243
Scholz, R. W., 2011. Environmental literacy in science and society: From knowledge to decisions. Cambridge University Press, New York.
Schomers S., Matzdorf B. 2013. Payments for ecosystem services: A review and comparison of developing and industrialized countries. Ecosystem Services, 6, 16–30. https://doi.org/10.1016/j.ecoser.2013.01.002
Schuck-Zöller S., Abeling T., Bender S., Groth M., Keup-Thiel E., Molitor H., Sander K., Seipold P., Vilsmaier U., 2023. Klimakommunikation und Klimaservices (Climate communication and climate services). In Brasseur, G., Jacob, D., Schuck-Zöller, S. (Eds.). Klimawandel in Deutschland. Springer Spektrum, Berlin, Heidelberg, 491-505.
Seidl R., Turner M.G., 2022. Post-disturbance reorganization of forest ecosystems in a changing world. Proceedings of the National Academy of Sciences, 119(28), e2202190119. https://doi.org/10.1073/pnas.2202190119
Seliger A., Ammer C., Kreft H., et al., 2023. Diversification of coniferous monocultures in the last 30 years and implications for forest restoration: a case study from temperate lower montane forests in Central Europe. Eur J Forest Res 142: 1353–1368. https://doi.org/10.1007/s10342-023-01595-4
Spangenberg G., Zimmermann R., Küppers M., Schäffer J., Hein S., 2024. Interannual radial growth response of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to severe droughts: an analysis along a gradient of soil properties and rooting characteristics. Annals of Forest Science 81: 23. https://doi.org/10.1007/s13595-024-01074-5
Spiecker H., 2000. Growth of Norway spruce (Picea abies [L.] Karst.) under changing environmental conditions in Europe. EFI Proceedings 33: 11-26.
Spiecker H., Kahle H.-P., 2023. Climate-driven tree growth and mortality in the Black Forest, Germany—Long-term observations. Global Change Biology, 29(8), 2214–2226. https://doi.org/10.1111/gcb.16897
Stadelmann G., Bugmann H., Meier F., Wermelinger B., Bigler C., 2013. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. Forest Ecology and Management, 305, 273-281. https://doi.org/10.1016/j.foreco.2013.06.003
Steger C., Klein J.A., Reid R.S., Lavorel S., Tucker C., et al., 2021. Science with society: Evidence-based guidance for best practices in environmental transdisciplinary work. Global Environmental Change 68 (2021) 102240. https://doi.org/10.1016/j.gloenvcha.2021.102240
Stojnić S., Suchocka M., Benito-Garzón M., Torres-Ruiz J.M., Cochard H., et al., 2018. Variation in xylem vulnerability to embolism in European beech from geographically marginal populations. Tree Physiology 38(2): 173–185. https://doi.org/10.1093/treephys/tpx128
Taylor R., Koskine A., 2023. UNECE/FAO Data Brief Sawn softwood 2023.
Teskey R., Wertin T., Bauweraerts I., Ameye M., McGuire M.A., Steppe K., 2014. Responses of tree species to heat waves and extreme heat events. Plant, Cell & Environment. https://doi.org/10.1111/pce.12417
Toth D., Maitah M., Maitah K., Jarolínová V., 2020. The impacts of calamity logging on the development of spruce wood prices in Czech forestry. Forests, 11(3), 283. https://doi.org/10.3390/f11030283
Thorn S., Seibold S., Leverkus A. B., Michler T., Müller J., Noss R.F., Stork N., Vogel S., Lindenmayer D.B., 2020. The living dead: acknowledging life after tree death to stop forest degradation. Front Ecol Environ. https://doi.org/10.1002/fee.2252
Tijdeman E., Blauhut V., Stoelzle M., Menzel L., Stahl K., 2022. Different drought types and the spatial variability in their hazard, impact, and propagation characteristics. Natural Hazards and Earth System Sciences 22(6): 2099–2116. https://doi.org/10.5194/nhess-22-2099-2022
Tripathi R.S., Khan M.L., 2007. Regeneration dynamics of natural forests - a review. Proceedings of the Indian National Science Academy 73(3): 167-195.
Trubin A., Kozhoridze G., Zabihi K., Modlinger R., Singh V.V., Surový P., Jakuš R., 2023. Detection of susceptible Norway spruce to bark beetle attack using PlanetScope multispectral imagery. Front. For. Glob. Change 6: 1130721. https://doi.org/10.3389/ffgc.2023.1130721
UBA, 2022. https://www.umweltbundesamt.de/sites/default/files/medien/3521/publikationen/umweltbewusstsein_2022_bf-2023_09_04.pdf (last access: 4 December 2024).
Vacek Z., Vacek S., Cukor J., 2023. European forests under global climate change: Review of tree growth processes, crises and management strategies. J Environ Manage. 332: 117353. https://doi.org/10.1016/j.jenvman.2023.117353
Vanoni M., Bugmann H., Nötzli M., Bigler C., 2016. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. Forest Ecology and Management 382: 51-63. https://doi.org/10.1016/j.foreco.2016.10.001
Vilsmaier U., Lang D., 2014. Transdisziplinäre Forschung (Transdisciplinary research). In Heinrichs, H., Michelsen, G. (Eds.). Nachhaltigkeitswissenschaften. Springer Spektrum, Berlin, Heidelberg, 87-113.
Von Wehrden H., Guimaraes M.H., Bina O., Varanda M., Lang D.J., ... & Lawrence R.J., 2019. Interdisciplinary and transdisciplinary research: Finding the common ground of multi-faceted concepts. Sustainability Science, 14, 875–888. https://doi.org/10.1007/s11625-018-0594-x
WBW, 2021. Wissenschaftlicher Beirat für Waldpolitik, 2021. Bauhus J., Dieter M., Farwig N., Hafner A., Kätzel R., ... & Seeling U. Die Anpassung von Wäldern und Waldwirtschaft an den Klimawandel (The adaptation of forests and forestry to climate change). Report of the Scientific Advisory Board for Forest Policy. Berlin, 192 p.
Wijas B.J., Allison S.D., Austin A.T., Cornwell W.K., Cornelissen J.H.C., et al., 2024. The role of deadwood in the carbon cycle: Implications for models, forest management, and future climates. Annual Review of Ecology, Evolution, and Systematics 55, 133-155. https://doi.org/10.1146/annurev-ecolsys-110421-102327
Wohlgemuth T., Gossner M.M., Campagnaro T., Marchante H., van Loo M., et al., 2022. Impact of non-native tree species in Europe on soil properties and biodiversity: a review. NEOBIOTA 78: 45-69. doi: 10.3897/neobiota.78.87022
Weemstra M., Eilmann B., Sass-Klaassen U.G.W., Sterck F.J., 2013. Summer droughts limit tree growth across 10 temperate species on a productive forest site. Forest Ecology and Management 306: 142–149. https://doi.org/10.1016/j.foreco.2013.06.007
Yang H., Viña A., Winkler J.A., Chung M.G., Huang Q., Dou Y., McShea W.J., Songer M., Zhang J., Liu J., 2021. A global assessment of the impact of individual protected areas on preventing forest loss. Science of the Total Environment 777: 145995. https://doi.org/10.1016/j.scitotenv.2021.145995
Yousefpour R., Temperli C., Jacobsen J.B., Thorsen B.J., Meilby H., ... & Hanewinkel M. 2017. A framework for modeling adaptive forest management and decision making under climate change. Ecology and Society 22(4).
Yousefpour R., Hanewinkel M., 2015. Forestry professionals’ perceptions of climate change, impacts and adaptation strategies for forests in south-west Germany. Climatic Change 130(2): 273-286.
Zimová S., Dobor L., Hlásny T., Rammer W., Seidl R., 2020. Reducing rotation age to address increasing disturbances in Central Europe: Potential and limitations. Forest Ecology and Management 468: 118145. https://doi.org/10.1016/j.foreco.2020.118145
Zimmermann J., Hauck M., Dulamsuren C., Leuschner C., 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18: 560–572. https://doi.org/10.1007/s10021-015-9849-x
Downloads
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access