Sentinel-2 and environmental data as predictors of the spatiotemporal dynamics of Ips typographus - induced tree mortality in natural spruce forests.
DOI:
https://doi.org/10.15287/afr.2025.4051Abstract
Biotic and abiotic disturbances affect forest ecosystems. Unlike sudden disturbances, bark beetle outbreaks are a gradual process. Bark beetle (Ips typographus) outbreak triggered by windstorm in Norway spruce (Picea abies) forests was analyzed over a 7-year period (2016-2021) in mountainous conditions (890 – 2,100 m a.s.l.) with deep valleys and high ridges. The disturbance extent and dynamics were assessed via remote sensing (Sentinel-2 imagery) using a supervised maximum likelihood classification. Topographical variables, bark beetle-related spatial metrics and spectral indices were assessed for predictor importance for their influence on bark beetle-caused disturbance dynamics by boosted regression trees. The overall accuracy of the classification ranged from 87 – 92% (Kappa 0.84 – 0.89). Bark beetle spots were initiated mainly at relatively high altitudes and preferentially on exposed terrain. Spectral indices, such as the red-edge normalized difference vegetation index (RENDVI), played a consistent role across various years in predicting spot initiation. With respect to the spread of bark beetle spots, distance emerged as the most influential predictor across all years. Additionally, elevation and RENDVI had notable impacts on spot spreading. In the case of bark beetle spot initialization, the importance of different factors varied among years whereas for spot spreading distance was the most influential for each year.References
Abdullah H., Skidmore A.K., Darvishzadeh R., Heurich M., 2019. Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus, L.) compared with Landsat-8. Remote Sensing in Ecology and Conservation 5(1): 87–106. https://doi.org/10.1002/rse2.93
Astola H., Häme T., Sirro L., Molinier M., Kilpi J., 2019. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment 223: 257–273. https://doi.org/10.1016/j.rse.2019.01.019
Baier P., Pennerstorfer J., Schopf A., 2007. PHENIPS – A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. Forest Ecology and Management 249(1–3): 171–186. https://doi.org/10.1016/j.foreco.2007.05.020
Baret F., Guyot G., 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment 35(2): 161–173. https://doi.org/10.1016/0034-4257(91)90009-u
Bárta V., Lukeš P., Homolová L., 2021. Early detection of bark beetle infestation in Norway spruce forests of Central Europe using Sentinel-2. International Journal of Applied Earth Observation and Geoinformation 100: 102335. https://doi.org/10.1016/j.jag.2021.102335
Birth G., McVey G., 1968. Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal 60(4): 640–643. https://doi.org/10.2134/agronj1968.00021962006000060016x
Chen J., Du H., Mao F., Huang Z., Chen C., Hu M., Li X., 2024. Improving forest age prediction performance using ensemble learning algorithms based on satellite remote sensing data. Ecological Indicators 166: 112327. https://doi.org/10.1016/j.ecolind.2024.112327
Congedo L., 2021. Semi-Automatic Classification Plugin. Retrieved from https://semiautomaticclassificationmanual.readthedocs.io/_/downloads/en/latest/pdf/
Coulson R.N., Feldman R.M., Sharpe P.J.H., Pulley P.E., Wagner T.L., Payne T.L., 1989. An overview of the TAMBEETLE model of Dendroctonus frontalis population dynamics. Ecography 12(4): 445–450. https://doi.org/10.1111/j.1600-0587.1989.tb00921.x
Dalponte M., Cetto R., Marinelli D., Andreatta D., Salvadori C., Pirotti F., Frizzera L., Gianelle D., 2023. Spectral separability of bark beetle infestation stages: A single-tree time-series analysis using Planet imagery. Ecological Indicators 153: 110349. https://doi.org/10.1016/j.ecolind.2023.110349
de Oliveira L.F.R., de Oliveira M.L.R., Gomes F.S., Santana R.C., 2017. Estimating foliar nitrogen in Eucalyptus using vegetation indexes. Scientia Agricola 74(1): 142–147. https://doi.org/10.1590/1678-992x-2015-0477
Deng Y., Goodchild M.F., Chen X., 2009. Using NDVI to define thermal south in several mountainous landscapes of California. Computers & Geosciences 35(3): 327–336. https://doi.org/10.1016/j.cageo.2008.08.005
Ďuračiová R., Muňko M., Barka I., Koreň M., Resnerová K., Holuša J., Blaženec M., Potterf M., Jakuš R., 2020. A bark beetle infestation predictive model based on satellite data in the frame of decision support system TANABBO. iForest 13(2): 215–223. https://doi.org/10.3832/ifor3271-013
Ďuračiová R., Pružinec F., 2022. Effects of terrain parameters and spatial resolution of a digital elevation model on the calculation of potential solar radiation in the mountain environment: A case study of the Tatra Mountains. ISPRS International Journal of Geo-Information 11(7): 389. https://doi.org/10.3390/ijgi11070389
Fernández-Carrillo, Á., Franco-Nieto, A., Yagüe-Ballester, M.J. and Gómez-Giménez, M., 2024. Predictive Model for Bark Beetle Outbreaks in European Forests. Forests, 15(7), p.1114. https://doi.org/10.3390/f15071114
Elith J., Leathwick J.R., Hastie T., 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77(4): 802–813. https://doi.org/10.1111/j.1365-2656.2008.01390.x
ESRI, 2024. ArcGIS Pro 3.0. Environmental Systems Research Institute, Redlands, CA.
ENVI 5.7, 2010. Exelis Visual Information Solutions.
Friedman J.H., 2001. The role of statistics in the data revolution? International Statistical Review 69(1): 5–10. https://doi.org/10.1111/j.1751-5823.2001.tb00474.x
Friedman J.H., Meulman J.J., 2003. Multiple additive regression trees with application in epidemiology. Statistics in Medicine 22(15): 1365–1381. https://doi.org/10.1002/sim.1501
GCCA SR, 2024. Airborne Laser Scanning and DTM 5.0.
Gitelson A., Merzlyak M.N., 1994. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology 22(2): 247–252. https://doi.org/10.1016/1011-1344(93)06963-4
Grabska E., Hostert P., Pflugmacher D., Ostapowicz K., 2019. Forest stand species mapping using the Sentinel-2 time series. Remote Sensing 11(10): 1197. https://doi.org/10.3390/rs11101197
Hais M., Kučera T., 2008. Surface temperature change of spruce forest as a result of bark beetle attack: Remote sensing and GIS approach. European Journal of Forest Research 127(3): 327–336. https://doi.org/10.1007/s10342-008-0208-8
Havašová M., Bucha T., Ferenčík J., Jakuš R., 2015. Applicability of a vegetation indices-based method to map bark beetle outbreaks in the High Tatra Mountains. Annals of Forest Research 58(2): 295–310. https://doi.org/10.15287/afr.2015.388
Havašová M., Ferenčík J., Jakuš R., 2017. Interactions between windthrow, bark beetles and forest management in the Tatra National Parks. Forest Ecology and Management 391: 349–361. https://doi.org/10.1016/j.foreco.2017.01.009
Hlásny T., Zimová S., Merganičová K., Štěpánek P., Modlinger R., Turčáni M., 2021. Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management 490: 119075. https://doi.org/10.1016/j.foreco.2021.119075
Holeksa J., Jaloviar P., Kucbel S., Saniga M., Svoboda M., Szewczyk J., Szwagrzyk J., Zielonka T., Żywiec M., 2017. Models of disturbance driven dynamics in the West Carpathian spruce forests. Forest Ecology and Management 388: 79–89. https://doi.org/10.1016/j.foreco.2016.08.026
Hroššo B., Mezei P., Potterf M., Majdák A., Blaženec M., Korolyova N., Jakuš R., 2020. Drivers of spruce bark beetle (Ips typographus) infestations on downed trees after severe windthrow. Forests 11(12): 121290. https://doi.org/10.3390/f11121290
Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83(1): 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
Huo L., Persson H.J., Lindberg E., 2021. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sensing of Environment 255: 112240. https://doi.org/10.1016/j.rse.2020.112240
Imran A.B., Khan K., Ali N., Ahmad N., Ali A., Shah K., 2020. Narrow band based and broadband derived vegetation indices using Sentinel-2 imagery to estimate vegetation biomass. Global Journal of Environmental Science and Management 6(1): 97–108. https://doi.org/10.22034/gjesm.2020.01.08
Jakuš, R., 1995. Bark beetle (Col., Scolytidae) communities and host and site factors on tree level in Norway spruce primeval natural forest. Journal of Applied Entomology, 119(1‐5): 643-651. https://doi.org/10.1111/j.1439-0418.1995.tb01352.x
Jakuš R., Grodzki W., Jezik M., Jachym M., 2003. Definition of spatial patterns of bark beetle Ips typographus (L.) outbreak spreading in Tatra Mountains (Central Europe), using GIS. In: Ecology, Survey and Management of Forest Insects, 1–5 September 2002, PA, USA. US Dept of Agriculture, Forest Service, Northeastern Research Station, pp. 25–32.
Jakuš R., Ježík M., Kissiyar O., Blaženec M., 2005. Prognosis of bark beetle attack in TANABBO model. In: GIS and Databases in the Forest Protection in Central Europe, 27–35 November 2004, Krakow, Poland. pp. 35–43.
Jensen J.R., 2015. Introductory digital image processing: A remote sensing perspective. 4th ed. Pearson, Boston, 684 p.
Jönsson A.M., Appelberg G., Harding S., Bärring L., 2009. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Global Change Biology 15(4): 486–499. https://doi.org/10.1111/j.1365-2486.2008.01742.x
Kamińska A., 2022. Spatial autocorrelation based on remote sensing data in monitoring of Norway spruce dieback caused by the European spruce bark beetle Ips typographus L. in the Białowieża Forest. Sylwan 166(7): 572–582. https://doi.org/10.26202/sylwan.2022072
Kärvemo S., Van Boeckel T.P., Gilbert M., Grégoire J.-C., Schroeder M., 2014a. Large-scale risk mapping of an eruptive bark beetle – Importance of forest susceptibility and beetle pressure. Forest Ecology and Management 318: 158–166. https://doi.org/10.1016/j.foreco.2014.01.025
Kärvemo S., Rogell B., Schroeder M., 2014b. Dynamics of spruce bark beetle infestation spots: Importance of local population size and landscape characteristics after a storm disturbance. Forest Ecology and Management 334: 232–240. https://doi.org/10.1016/j.foreco.2014.09.011
Kärvemo S., Huo L., Öhrn P., Lindberg E., Persson H.J., 2023. Different triggers, different stories: Bark-beetle infestation patterns after storm and drought-induced outbreaks. Forest Ecology and Management 545: 121255. https://doi.org/10.1016/j.foreco.2023.121255
Kautz M., Dworschak K., Gruppe A., Schopf R., 2011. Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. Forest Ecology and Management 262: 598–608. https://doi.org/10.1016/j.foreco.2011.04.023
Lapin, M., Faško, P., Melo, M., Šťastný, P., Tomlain, J., 2002. Climatic regions. In: Landscape Atlas of the Slovak Republic, map 1:1 000 000, p. 94.
Lastovicka J., Svec P., Paluba D., Kobliuk N., Svoboda J., Hladky R., Stych P., 2020. Sentinel-2 data in an evaluation of the impact of the disturbances on forest vegetation. Remote Sensing 12: 1914. https://doi.org/10.3390/rs12121914
Lausch A., Fahse L., Heurich M., 2011. Factors affecting the spatio-temporal dispersion of Ips typographus (L.) in Bavarian Forest National Park: A long-term quantitative landscape-level analysis. Forest Ecology and Management 261: 233–245. https://doi.org/10.1016/j.foreco.2010.10.012
Lausch A., Heurich M., Gordalla D., Dobner H.-J., Gwillym-Margianto S., Salbach C., 2013. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. Forest Ecology and Management 308: 76–89. https://doi.org/10.1016/j.foreco.2013.07.043
Law K.H., Nichol J., 2004. Topographic correction for differential illumination effects on Ikonos satellite imagery. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 35: 641–646.
Leathwick J.R., Snelder T., Chadderton W.L., Elith J., Julian K., Ferrier S., 2011. Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications. Freshwater Biology 56: 21–38. https://doi.org/10.1111/j.1365-2427.2010.02414.x
Lillesand T., Kiefer R.W., Chipman J., 2015. Remote Sensing and Image Interpretation. 7th ed. Wiley, New York, 736 p.
Lindman L., Ranius T., Schroeder M., 2023. Regional climate affects habitat preferences and thermal sums required for development of the Eurasian spruce bark beetle, Ips typographus. Forest Ecology and Management 544: 121216. https://doi.org/10.1016/j.foreco.2023.121216
Marini L., Ayres M.P., Battisti A., Faccoli M., 2012. Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change 115: 327–341. https://doi.org/10.1007/s10584-012-0463-z
Marini L., Lindelöw Å., Jönsson A.M., Wulff S., Schroeder L.M., 2013. Population dynamics of the spruce bark beetle: A long-term study. Oikos 122: 1768–1776. https://doi.org/10.1111/j.1600-0706.2013.00431.x
McCune B., Keon D., 2002. Equations for potential annual direct incident radiation and heat load index. Journal of Vegetation Science 13: 603–606. https://doi.org/10.1658/1100-9233(2002)013[0603:efpadi]2.0.co;2
Merzlyak M.N., Gitelson A.A., Chivkunova O.B., Rakitin V.Y., 1999. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum 106: 135–141. https://doi.org/10.1034/j.1399-3054.1999.106119.x
Mezei P., Blaženec M., Grodzki W., Škvarenina J., Jakuš R., 2017. Influence of different forest protection strategies on spruce tree mortality during a bark beetle outbreak. Annals of Forest Science 74: 1–12. https://doi.org/10.1007/s13595-017-0663-9
Mezei P., Grodzki W., Blaženec M., Škvarenina J., Brandýsová V., Jakuš R., 2014. Host and site factors affecting tree mortality caused by the spruce bark beetle (Ips typographus) in mountainous conditions. Forest Ecology and Management 331: 196–207. https://doi.org/10.1016/j.foreco.2014.07.031
Mezei P., Potterf M., Škvarenina J., Rasmussen J.G., Jakuš R., 2019. Potential solar radiation as a driver for bark beetle infestation on a landscape scale. Forests 10: 604. https://doi.org/10.3390/f10070604
Migas-Mazur R., Kycko M., Zwijacz-Kozica T., Zagajewski B., 2021. Assessment of Sentinel-2 images, support vector machines and change detection algorithms for bark beetle outbreaks mapping in the Tatra Mountains. Remote Sensing 13(16): 3314. https://doi.org/10.3390/rs13163314
Mišurec J., Kopačková V., Lhotáková Z., Campbell P., Albrechtová J., 2016. Detection of spatio-temporal changes of Norway spruce forest stands in Ore Mountains using Landsat time series and airborne hyperspectral imagery. Remote Sensing 8: 92. https://doi.org/10.3390/rs8020092
Müller M., Olsson P.-O., Eklundh L., Jamali S., Ardö J., 2022. Features predisposing forest to bark beetle outbreaks and their dynamics during drought. Forest Ecology and Management 523: 120480. https://doi.org/10.1016/j.foreco.2022.120480
Nardi D., Jactel H., Pagot E., Samalens J.-C., Marini L., 2023. Drought and stand susceptibility to attacks by the European spruce bark beetle: A remote sensing approach. Agricultural and Forest Entomology 25: 119–129. https://doi.org/10.1111/afe.12536
Negrón J.F., Cain B., 2019. Mountain pine beetle in Colorado: A story of changing forests. Journal of Forestry 117: 144–151. https://doi.org/10.1093/jofore/fvy032
Nilsson S.G., Nilsson I.N., 2004. Biodiversity in Linnaeus’ birthplace in Småland 4: Vascular plants in Stenbrohults village. Svensk Botanisk Tidskrift 98: 65–150.
Økland B., Berryman A., 2004. Resource dynamic plays a key role in regional fluctuations of the spruce bark beetle Ips typographus. Agricultural and Forest Entomology 6: 141–146. https://doi.org/10.1111/j.1461-9555.2004.00214.x
Økland B., Nikolov C., Krokene P., Vakula J., 2016. Transition from windfall- to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. Forest Ecology and Management 363: 63–73. https://doi.org/10.1016/j.foreco.2015.12.007
Olofsson P., Foody G.M., Herold M., Stehman S.V., Woodcock C.E., Wulder M.A., 2014. Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment 148: 42–57. https://doi.org/10.1016/j.rse.2014.02.015
Olofsson P., Foody G.M., Stehman S.V., Woodcock C.E., 2013. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment 129: 122–131. https://doi.org/10.1016/j.rse.2012.10.031
Parisien M.A., Moritz M.A., 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs 79: 127–154. https://doi.org/10.1890/07-1289.1
Parobeková Z., Sedmáková D., Kucbel S., Pittner J., Jaloviar P., Saniga M., Balanda M., Vencurik J., 2016. Influence of disturbances and climate on high-mountain Norway spruce forests in the Low Tatra Mts., Slovakia. Forest Ecology and Management 380: 128–138. https://doi.org/10.1016/j.foreco.2016.08.031
Potterf M., Nikolov C., Kočická E., Ferenčík J., Mezei P., Jakuš R., 2019. Landscape-level spread of beetle infestations from windthrown- and beetle-killed trees in the non-intervention zone of the Tatra National Park, Slovakia (Central Europe). Forest Ecology and Management 432: 489–500. https://doi.org/10.1016/j.foreco.2018.09.050
QGIS Development Team, 2021. QGIS Geographic Information System. Available at: https://qgis.org. Accessed 31 Jan 2022.
Ridgeway G., 2024. Generalized Boosted Models: A guide to the gbm package. CRAN vignette. https://cran.r-project.org/web/packages/gbm/
Rouse J.W., Haas R.H., Schell J.A., Deering D.W., Harlan J.C., 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA Report No. E75-10354.
Schelhaas M.-J., Nabuurs G.-J., Schuck A., 2003. Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology 9: 1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x
Seidl R., Schelhaas M.J., Lexer M.J., 2011. Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology 17: 2842–2852. https://doi.org/10.1111/j.1365-2486.2011.02452.x
Senf C., Seidl R., 2020. Mapping the forest disturbance regimes of Europe. Nature Sustainability 4: 63–70. https://doi.org/10.1038/s41893-020-00609-y
Senf C., Seidl R., 2018. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Global Change Biology 24: 1201–1211. https://doi.org/10.1111/gcb.13897
Siegfried J., Longchamps L., Khosla R., 2019. Multispectral satellite imagery to quantify in-field soil moisture variability. Journal of Soil and Water Conservation 74: 33–40. https://doi.org/10.2489/jswc.74.1.33
Stadelmann G., Bugmann H., Wermelinger B., Bigler C., 2014. Spatial interactions between storm damage and subsequent infestations by the European spruce bark beetle. Forest Ecology and Management 318: 167–174. https://doi.org/10.1016/j.foreco.2014.01.022
Trubin A., Kozhoridze G., Zabihi K., Modlinger R., Singh V.V., Surový P., Jakuš R., 2023. Detection of susceptible Norway spruce to bark beetle attack using PlanetScope multispectral imagery. Frontiers in Forests and Global Change 6: 1130721. https://doi.org/10.3389/ffgc.2023.1130721
Trubin, A., Kozhoridze, G., Zabihi, K., Modlinger, R., Singh, V.V., Surový, P., Jakuš, R., 2024. Detection of green attack and bark beetle susceptibility in Norway Spruce: Utilizing PlanetScope Multispectral Imagery for Tri-Stage spectral separability analysis. Forest Ecology and Management, 560, p.121838. https://doi.org/10.1016/j.foreco.2024.121838
Weiss A.D., 2001. Topographic position and landforms analysis. In: Proceedings of the ESRI User Conference, San Diego, CA, USA.
Wermelinger B., 2004. Ecology and management of the spruce bark beetle Ips typographus—a review of recent research. Forest Ecology and Management 202: 67–82. https://doi.org/10.1016/j.foreco.2004.07.018
Wichmann L., Ravn H.P., 2001. The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. Forest Ecology and Management 148: 31–39. https://doi.org/10.1016/S0378-1127(00)00477-1
Wulder M.A., Dymond C.C., White J.C., Leckie D.G., Carroll A.L., 2006. Surveying mountain pine beetle damage of forests: A review of remote sensing opportunities. Forest Ecology and Management 221: 27–41. https://doi.org/10.1016/j.foreco.2005.09.021
Xie Q., Dash J., Huang W., Peng D., Qin Q., Mortimer H., 2018. Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11: 1482–1492. https://doi.org/10.1109/JSTARS.2018.2813281
Young D.J.N., Slaton M.R., Koltunov A., 2023. Temperature is positively associated with tree mortality in California subalpine forests containing whitebark pine. Ecosphere 14(2): e4400. https://doi.org/10.1002/ecs2.4400
Zhong L., Hu L., Zhou H., 2019. Deep learning based multi-temporal crop classification. Remote Sensing of Environment 221: 430–443. https://doi.org/10.1016/j.rse.2018.11.032
R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: https://www.R-project.org/
XGBoost Developers, 2024. Introduction to Boosted Trees – XGBoost 1.7.6 documentation. Available at: https://xgboost.readthedocs.io/en/stable/tutorials/model.html
Downloads
Published
Issue
Section
License
All the papers published in Annals of Forest Research are available under an open access policy (Gratis Gold Open Access Licence), which guaranty the free (of taxes) and unlimited access, for anyone, to entire content of the all published articles. The users are free to “read, copy, distribute, print, search or refers to the full text of these articles”, as long they mention the source.
The other materials (texts, images, graphical elements presented on the Website) are protected by copyright.
The journal exerts a permanent quality check, based on an established protocol for publishing the manuscripts. The potential article to be published are evaluated (peer-review) by members of the Editorial Board or other collaborators with competences on the paper topics. The publishing of manuscript is free of charge, all the costs being supported by Forest Research and Management Institute.
More details about Open Access:
Wikipedia: http://en.wikipedia.org/wiki/Open_access