Research article

Nutrient dynamics and early decomposition rates of Picea abies needles in combination with Fagus orientalis leaf litter in an exogenous ecosystem

Farhad Ghasemi-Aghbash , Vahid Hosseini, Morteza Poureza

Farhad Ghasemi-Aghbash
University of Malayer, Malayer, Iran. Email: ghasemifarhad@yahoo.com
Vahid Hosseini
University of Kurdistan, Sanandaj, Iran
Morteza Poureza
Razi University, Kermanshah, Iran

Online First: November 24, 2015
Ghasemi-Aghbash, F., Hosseini, V., Poureza, M. 2015. Nutrient dynamics and early decomposition rates of Picea abies needles in combination with Fagus orientalis leaf litter in an exogenous ecosystem. Annals of Forest Research DOI:10.15287/afr.2015.475


The Hyrcanian forests in the Northern Iran are originally poor of coniferous and are considered as a refugium of temperate broad-leaved trees during the Quaternary glaciations. In this study mass loss and nutrients dynamic of Norway spruce needles when combined with oriental beech litter was investigated in a 50-year plantation of pure Norway spruce in the Hyrcanian forests. The litter bags technique was used to monitor the mass loss and nutrients concentration after 60, 120, 180, 270 and 400 days. The results showed that when decomposed alone the mass loss rate of spruce needles was generally lower than what reported in Europe. However, when combined with oriental beech litter the mass loss rate was hastened compared to when decomposed alone. A positive non-additive effect of beech leaf litter was observed on spruce nutrients dynamic. The concentration of N, P, K, and Mg in combined spruce needles with beech litter was generally higher compared to when spruce needles decomposed alone during
decomposition time. While the concentration of Mn and Ca in combined spruce needles with beech litter was generally higher than when spruce needles decomposed alone. At the end of the decomposition period the release of Mn and N was significantly higher in combined spruce needles than when it decomposed alone. Based on the stepwise regression N was the only nutrient entered to model which explained 37% of mass loss variation. It was concluded that oriental beech leaf litter drive a non-additive effect on mass loss and nutrient dynamic of Norway spruce needles. Therefore combining the plantation of Norway spruce with oriental beech can result in better regulating of needles decomposition and nutrients cycle.


Aber JD., Melillo JM., McClaugherty CA., 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany 68:2201– 2208.
DOI: 10.1139/b90-287

Aghbash F.Gh., Jalali Gh.A., Hosseini V., Hosseini M., Berg B., 2014. Study of the relationship of nutrients dynamics and chemical composition of litter with decomposition rate in late decomposition stages Journal of plant research 27: 715-727 (Text in Persian)

Albers D., Migge S., Schaefer M., Scheu S., 2004. Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biology and Biochemistry 36:155–164. DOI: 10.1016/j.soilbio.2003.09.002

Aponte C., Garcia VL., Mara-ón T., 2012. Tree species effect on litter decomposition and nutrient release in Mediterranean oak forests change over time. Ecosystems 15, 1204–1218. DOI: 10.1007/s10021-012-9577-4

Attiwill PM., Adams MA., 1993. Tansley review No. 50. Nutrient cycling in forests. New Phytologist. 124, 561-582. DOI: 10.1111/j.1469-8137.1993.tb03847.x

Barnes BV., Zak DR., Denton SR., Spurr SH., 1998. ForestEcology. 4th edition. New. York, John Wiley and Sons, Inc. 774 p.

Ber g B., 2000. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management 133: 13-22.

Berg B., McClaugherty CA., 2008. Plant litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag Berlin Heidelberg. 338 p. DOI: 10.1007/978-3-540-74923-3

Berg B., Laskowski R., 1997. Changes in nutrient concentrations and nutrient release in decomposing needle litter in monocultural systems of Pinus contorta and Pinussylvestris – a comparison and synthesis. Scandinavian Journal of Forest Research 12:113-121. DOI: 10.1080/ 02827589709355392

Berg B., Davey MP., De Marco A., Emmett B., Faituri M., Hobbie SE., Johansson MB., Liu C., McClaugherty CA., Norrell L., Rutigliano FA., Vesterdal L., Virzo De Santo A., 2010. Factors influencing limit values for pine needle litter decomposition: a synthesis for boreal and temperate pine forest systems. Biogeochemistry, 100: 57–73. DOI: 10.1007/s10533-009-9404-y

Berg B., Johansson MB., Meentemeyer V., 2000. Litter decomposition in a transect of Norway spruce forests: substrate quality and climate control. Canadian Journal of ForestResearch 30, 1136-1147. DOI: 10.1139/x00-044

Berger T., Berger P., 2014. Does mixing of beech (Fagus sylvatica) and spruce (Picea abies) litter hasten decomposition? Plant Soil 377:217 –234. DOI 10.1007 /s11104-013-2001-9.

Berger TW., Köllensperger G., Wimmer R., 2004. Plant-soil feedback in spruce (Picea abies) and mixed spruce-beech (Fagus sylvatica) stands as indicated by dendrochemistry. Plant Soil 264:69–83. DOI: 10.1023/B:PLSO. 0000047714.43253.25

Berger TW., Swoboda S., Prohaska T., Glatzel G., 2006. The role of calcium uptake from deep soils for spruce (Piceaabies) and beech (Fagussylvatica).ForestEcology and Management 229: 2 34–246.

Bremner JM., Mulvaney CS., 1982. Nitrogen-Total. In: Page, A.L.,Miller, R.H., and Keeney, D.R.(Eds), Methods of Soil Analysis, Part2. Chemical and Microbiological Properties. ASA,SSSA,WI: 595-624.

Chapman SK., Newman GS., Hart SC., Schweitzer GA., Koch GW., 2013. Leaf Litter Mixtures Alter Microbial Community Development: Mechanisms for Non-Additive Effects in Litter Decomposition. PloS ONE 29; 8(4):e 62671. DOI: 10.1371/journal.pone.0062671

De Martonne E., 1926. Aerisme, et índices d'aridite. Comptes rendus de l'Academie des Sciences 182:1395-1398.

Gartner T B., Cardon ZG., 2004. Decomposition dynamics in mixed-species leaf litter. Oikos 104: 230–246. DOI: 10.1111/j.0030-1299.2004.12738.x

Gholz HL., Wedin DA., Smitherman SM., Harmon ME., Parton WJ., 2000. Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6:751– 765. DOI: 10.1046/j.1365-2486.2000.00349.x

Guo LB., Sims REH., 1999. Litter decomposition and nutrient release via litter decomposition in New Zealandeucalypt short rotation forests. Agriculture, Ecosystems & Environment 75(1–2):133–140.
DOI: 10.1016/S0167-8809(99)00069-9

Hatfield RD., Jung HG., Ralph J., Buxton D.R., Weimer PJA.,1994. Comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures. Journal of Science of Food and Agriculture 65: 51-58. DOI: 10.1002/jsfa.2740650109

IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, NY: IBM Corp.

Issac RA., Johnson WC., 1975. Colloborative study of wet and dry techniques for the elemental analysis of plant tissue by atomic absorption spectrometer. Journal of Association of Agricultural chemist 58: 436-440.

Kara O.,BolatI., Cakıroglu K., Senturk M., 2014. Litter Decomposition and Microbial Biomass in Temperate Forests in Northwestern Turkey. Journal of Soil Science and Plant Nutrient 14: 31-41 DOI: 10.4067/S0718 5162014005000003

Laskowski R., Berg B., Johansson M., McClaugherty CA., 1995. Release pattern for potassium from decomposing forest leaf litter. Long-term decomposition in a Scots pine forest XI. Canadian Journal of Botany 73:2019–2027. DOI: 10.1139/b95-216

Leroy S., Stevens L., Lahijani H., Brewer S., 2008. Alate Pleistocene long pollen record from Lake Urmia, NW Iran. Quaternary Research 69:413–420 DOI: 10.1016/j.yqres.2008.03.004

Meentemeyer V., 1984. The geography of organic decomposition rates. Annals of the Association of American Geographers 74:551 – 560. DOI: 10.1111/j.1467-8306.1984.tb01473.x

Monleon VJ., Cromack K., 1996. Long-term effects of prescribed under burning on litter decomposition and nutrient release in ponderosa pine in central Oregon. ForestEcology and Management 81:143-152. DOI: 10.1016/0378-1127(95)03658-X

Moorhead DL., Currie WS., Rastetter EB., Parton WJ., HarmonME., 1999. Climate and litter qality controls on decomposition: An analysis of modeling approaches. Global Biogeochemical Cycles 13:575-589.
DOI: 10.1029/1998GB900014

Olsen SR., Dean L., 1965. Phosphourus. In:Black,C.A.(Eds), methods of soil Analysis, Part2. American Society of Agronomic, Mddison,pp.1044-1047.

Purahong W., Kapturska D., Pecyna MJ., Schulz E., Schloter M., 2014. Influence of Different ForestSystem Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests. PLoS ONE 9(4): e93700.doi: 10.1371/journal.pone.0093700 DOI: 10.1371/journal.pone.0093700

Sagheb talebi k., Sajedi T., Pourhashemi M., 2013. Forests of Iran. Springer Netherlands, PP.152.

Sariyildiz T., Tüfekçioĝlu, Küçük M. 2005. Comparison of Decomposition Rates of Beech (Fagus orientalis Lipsky) and Spruce (Picea orientalis (L.) Link) Litter in Pure and Mixed Stands of Both Species in Artvin,Turkey. Turkish Journal of Agriculture and Forestry 29: 429-438.

Shahsavari A., 1997. The Hyrcanian province phytogeographical and paleobotanical studies of the south of CaspianLake. Research Institute of Forests and Rangelands,Tehran, Tech. pub. No. 125, 48p

Silver WL., Miya RK., 2001. Global patterns in root decomposition: comparisons of climate and litter quality. Oecologia 129:407– 419. DOI: 10.1007/s004420100740

Staaf H., Berg B., 1982. Accumulation and release of plant nutrients in decomposing Scots pine needle litter. Long-term decomposition in a Scots pine forest, II. Canadian Journal of Botany 60:1561-1568. DOI: 10.1139/b82-199

Titus BD., Malcolm DC., 1999. The long-term decomposition of Sitkaspruce needles in barsh. Forestry 72:207-221. DOI: 10.1093/forestry/ 72.3.207

Vesterdal L., 1999. Influence of soil type on mass loss and nutrient release from decomposing foliage litter of beech and Norway spruce. Canadian Journal of Forest Research 29: 95–105. DOI: 10.1139/x98-182

Zhou G., Guan L., Wei X., Tang X., Liu S., Liu J., Zhang D., Yan J., 2008. Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant Soil 31:61–72. DOI: 10.1007/s11104-008-9658-5

Zohary M., 1973. Geobotanical foundations of the Middle East, 2 vols, G. Fischer,Stuttgart, 739p

Zhang D., Hui D., Luo Y., Zhou G., 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Plant Ecology 1: 85-93. DOI: 10.1093/jpe/rtn002

Zhang L., Zhang Y., Zou J., Siemann E., 2014. Decomposition of Phragmites australis litter retarded by invasive Solidago canadensis in mixtures: an antagonistic non-additive effect. Scientific report 4 : 5488 | DOI: 10.1038/srep05488


No Supplimentary Material available for this article.
No metrics available for this article.

Related Articles

Related Authors

 



In Google Scholar

In Annals of Forest Research

In Google Scholar

 
  • Farhad Ghasemi-Aghbash
  • Vahid Hosseini
  • Morteza Poureza
  • Farhad Ghasemi-Aghbash
  • Vahid Hosseini
  • Morteza Poureza