Forest vegetation in western Romania in relation to climate variables: Does community composition reflect modelled tree species distribution?


  • S. Heinrichs Faculty of Resource Management, University of Applied Sciences and Arts Hildesheim/Holzminden/Göttingen, Büsgenweg 1a, 37077 Göttingen, Germany
  • H. Walentowski Faculty of Resource Management, University of Applied Sciences and Arts Hildesheim/Holzminden/Göttingen, Büsgenweg 1a, 37077 Göttingen, Germany
  • E. Bergmeier Department of Vegetation and Phytodiversity Analysis, Georg-August University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
  • K.-H. Mellert Department Forest Nutrition and Water Resources, TUM School of Life Sciences, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
  • A. Indreica Department of Silviculture, Transilvania University of Brasov, Șirul Beethoven 1, 500123 Brașov, Romania
  • Y. Kuzyakov Department of Soil Science of Temperate Ecosystems, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
  • Ch. Leuschner Department of Plant Ecology and Ecosystem Research, Georg-August University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
  • A.M. Petrițan Department of Forest Ecology, “Marin Drăcea” National Research-Development Institute in Forestry - Station Brașov, Cloșca 13, 500040 Brașov
  • M. Teodosiu Department of Forest Ecology, “Marin Drăcea” National Research-Development Institute in Forestry,Station Câmpulung Moldovenesc, Calea Bucovinei 73b, 725100 Câmpulung Moldovenesc, Suceava, Romania



climate analogy, climate change, Fagus sylvatica, plant community, Quercus petraea, climatic marginality index, rear edge populations


European beech (Fagus sylvatica L.) is the prevailing tree species of mesic forests in Central Europe. Increasing summer temperatures and decreasing precipitation, as climate change scenarios predict, may, however, negatively influence beech growth and induce a shift to more thermophilous forest communities. Temperatures as expected in the future for western Central Europe are currently found in parts of western Romania. In light of this climate analogy we investigated forest vegetation as an indicator for future vegetation changes in five regions of western Romania representing a climatic gradient. We related species composition to climate variables and examined if tree and understorey species composition respond similarly to the climatic gradient. We further analysed if tree species occurrences correspond with their modelled distance to the rear niche edge. We found evidence for climatic effects on vegetation composition among regions as well as within deciduous and pine forests, respectively. This underlines that vegetation composition is a useful indicator for environmental change. Tree and understorey species compositions were closely linked showing that community-based characterization of forest stands can provide additional information on tree species suitability along environmental gradients. Both, vegetation composition and a climatic marginality index demonstrate the rear niche edge occurrence of beech in the studied sites of Romania and can predict the site suitability for different tree species. While vegetation surveys indicate Quercus petraea to be associated to moderately mesic forests, the marginality index suggested an inner niche position of sessile oak along the climatic gradient. Phytosociological relevés that differentiate between subspecies (or microspecies) of sessile oak with differing habitat requirements should be considered to complement national forest inventories and species distribution maps when modelling rear distribution edges. We conclude that climate driven forest vegetation composition in western Romania is a suitable analogon and may indicate future forest development in western Central Europe.


Agee J.K., 1998. Fire and pine ecosystems. In Richardson D.M. (ed.) Ecology and biogeography. Cambridge University Press, Cambridge, pp. 193-218. Arbeitskreis Standortskartierung, 2016. Forstliche Standortsaufnahme: Begriffe, Definitionen, Einteilungen, Kennzeichnungen, Erläuterungen. 7th edition, IHW, Eching, 400p. Bolte A., Czajkowski T., Kompa T., 2007. The north-eastern distribution range of European beech – a review. Forestry 80: 413-429. DOI: 10.1093/forestry/cpm028 Borhidi A., 1995. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian Flora. Acta Botanica Hungarica 39 (1-2): 97-181. Castro J., Zamora R., Hódar J.A., Gómez J.M., 2005. Ecology of seed germination of Pinus sylvestris L. at its southern, Mediterranean distribution range. Investigación Agraria. Sistemas y Recursos Forestales14: 143-152. Chifu T., Irimia I., 2014. Diversitatea fitosociologica a vegetatiei Romaniei. III Vegetatia padurilor si tufisurilor. Institutul European, Iasi. 551 p. Chytrý M., 1997. Thermophilous oak forests in the Czech Republic: Syntaxonomical revision of the Quercetalia pubescenti-petraeae. Folia Geobototanica et Phytotaxonomica 32: 221-258. DOI: 10.1007/BF02804006 Ciocârlan V., 2009. Flora ilustrată a României. Pteridophyta et Spermatophyta. Editura Ceres, București, 1138 p. Coldea G., 1991. Prodrome des associations végétales des Carpates du sud-est (Carpates Roumaines) [Prodromus of vegetation associations of the south-east Carpathians (Romanian Carpathians)]. Doc. Phytosoc. N.S. 13: 317–539. Coldea G., Pop A., 1996. Phytocoenologische Untersuchungen über die meso-thermophilen Eichenwälder Siebenbürgens [Phytocoenological investigation of the meso-thermophilous oak forests of Transylvania]. Stapfia 45: 55-64. Coldea G., Ursu T., Filipaş L., Hurdu B.I., Stoica I.-A., 2015a. Phytosociological research in forests of Poiana Ruscăi Mountains. Contribuţii Botanice 2015: 123-135. Coldea G., Indreica A., Oprea A., 2015b. Les associations vegetales de Roumanie. Tome 3. Les associations forestieres et arbustives [Vegetation associations of Romania. Volume 3. Forest and shrub associations]. Presa Universitara Clujeana. 281 p. Czúcz B., Gálhidy L., Mátyás C., 2011. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science 68: 99-108. DOI: 10.1007/s13595-011-0011-4 De Frenne P., Rodríguez-Sánchez F., Coomes D.A., Baeten L., Verstraeten G., Vellend M., Bernhardt-Römermann M., Brown C.D., Brunet J., Cornelis J., Decocq G.M., Dierschke H., Eriksson O., Gilliam F.S., Hédl R., Heinken T., Hermy M., Hommel P., Jenkins M.A., Kelly D.L., Kirby K.J., Mitchell F.J.G., Naaf T., Newman M., Peterken G., Petřík P., Schultz J., Sonnier G., Van Calster H., Waller D.M., Walther G.-R., Whitea P.S., Woods K.D., Wulf M., Graae B.J., Verheyen K., 2013. Microclimate moderates plant responses to macroclimate warming. PNAS 110: 18561–18565. DOI: 10.1073/pnas.1311190110 Di Pietro R., Viscosi V., Peruzzi L., Fortini P., 2012. A review of the application of the name Quercus dalechampii. TAXON 61: 1311-1316. Dierschke H., 1994. Pflanzensoziologie [Plant Sociology]. Ulmer, Stuttgart, 683 p. Dolos K., Mette T., Wellstein C., 2016. Silvicultural climatic turning point for European beech and sessile oak in Western Europe derived from national forest inventories. Forest Ecology and Management 373: 128-137. DOI: 10.1016/j.foreco.2016.04.018 Doniță N., Ivan D., Coldea G., Sanda V., Popescu A., Chifu T., Paucă-Comănescu M., Mititelu D., Boșcaiu N., 1992. Vegetația României [Vegetation of Romania]. Ed. Tehnică Agricolă. București. 407p. Ellenberg H., 1963. Vegetation Mitteleuropas mit den Alpen [Vegetation of Central Europe with the Alps]. 1st edition, Ulmer, Stuttgart. Ellenberg H., Leuschner C., 2010. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht [Vegetation of Central Europe with the Alps in ecological, dynamic and historic view]. 6th edition, Ulmer, Stuttgart, 1357 p. Enescu C.M., Dănescu A., 2013. Black Locust (Robinia pseudoacacia L.) – An invasive neophyte in the conventional land reclamation flora in Romania). Bulletin of the Transilvania University of Braşov, Series II 6(55): No. 2. Falk W., Mellert K.H., 2011. Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria. Journal of Vegetation Science 22(4): 621-634. DOI: 10.1111/j.1654-1103.2011.01294.x Fang J., Lechowicz M.J., 2006. Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography 33: 1804-1819. DOI: 10.1111/j.1365-2699.2006.01533.x Fischer H.S., Gilgen H., 2002. DACHRad – Berechnung der direkten Sonneneinstrahlung in Deutschland, Österreich und der Schweiz [DACHRad – Calculation of direct radiation in Germany, Austria and Switzerland]. Bulletin of the Geobotanical Institute ETH: 68: 83-94. Gärtner S., Reif A., Xystrakis F., Sayer U., Bendagha N., Matzarakis A., 2008. The drought tolerance limit of Fagus sylvatica forest on limestone in southwestern Germany. Journal of Vegetation Science 19: 757-768. DOI: 10.3170/2008-8-18442 Hampe A., Petit R.J., 2005. Conserving biodiversity under climate change: the rear edge matters. Ecology Letters 8: 461-467. DOI: 10.1111/j.1461-0248.2005.00739.x Hampe A., Jump A.S., 2011. Climate relicts: past, present, future. Annu. Rev. Ecol. Evol. Syst. 42: 313-333. DOI: 10.1146/annurev-ecolsys-102710-145015 Hancock M., Egan S., Summers R., Cowie N., Amphlett A., Rao S., Hamilton A., 2005. The effect of experimental prescribed fire on the establishment of Scots pine Pinus sylvestris seedlings on heather Calluna vulgaris moorland. Forest Ecology and Management 212: 199-213. DOI: 10.1016/j.foreco.2005.03.039 Herrero A., Rigling A., Zamora R., 2013. Varying climate sensitivity at the dry distribution edge of Pinus sylvestris and P. nigra. Forest Ecol Manage 308: 50-61. DOI: 10.1016/j.foreco.2013.07.034 Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. DOI: 10.1002/joc.1276 Hobi, M.L., Commarmot, B. & Bugmann, H., 2015. Pattern and process in the largest primeval beech forest of Europe (Ukrainian Carpathians). Journal of Vegetation Science, 26 (2), 323–336. DOI: 10.1111/jvs.12234 Horvat I., Glavač V., Ellenberg H., 1974. Vegetation Südosteuropas [Vegetation of South-east Europe]. Fischer, Jena, 768 p. Indreica A., 2011. On the occurence in Romania of Potentillo albae-Quercetum petraeae Libbert 1933 Association. Not. Bot. Hort. Agrobot. Cluj 39(1): 297-306. IPCC, 2013. Climate change 2013: the physical science basis. Cambridge University Press, Cambridge, 1535 p. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F., 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15: 259-263. DOI: 10.1127/0941-2948/2006/0130 Lenoir J., Graae B.J., Aarrestad P.A., Alsos I.G., Armbruster W.S., Ausrheim G., Bergendorff C., Birks H.J.B., Bråthen K.A., Brunet J., Bruun H.H., Dahlberg C.J., Decocq G., Diekmann M., Dynesius M., Ejnæs R., Gryntes J.-A., Hylander K., Klanderud K., Luoto M., Milbau A., Moora M., Nygaard B., Odland A., Ravolainen V.T., Reinhardt S., Sandvik S.M., Schei F.H., Speed, J.D.M., Tveraabak L.U., Vandvik V., Velle L.G., Virtanen R., Zobel M., Svenning J.-C., 2013. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Global Change Biology 19:1470–1481. DOI: 10.1111/gcb.12129 Leuschner C., 2015. Monospecific and mixed stands of Fagus and Nothofagus species in the temperate zones of the world. Berichte der Reinhold Tüxen-Gesellschaft 27: 49-63. Maclean I.M.D., Hopkins J.J., Bennie J., Lawson C.R., Wilson R.J., 2015. Microclimates buffer the responses of plant communities to climate change. Global Ecology and Biogeography 24: 1340-1350. DOI: 10.1111/geb.12359 Máliš F., Jarolimek I., Kliment J., Slezak M., 2013. Forest vegetation with Festuca drymeja in Slovakia – syntaxonomy and ecology. Phyton, 53(2): 265-288. Matacă S., 2005. Parcul Natural Portile de Fier. Flora, vegetatie si protectia naturii [Natural Park Iron Gates. Flora, Vegetation and Nature Conservation]. Ed. Universitaria Craiova, 550 p. Mellert K.H., Deffner V., Küchenhoff H., Kölling C., 2015. Modeling sensitivity to climate change and estimating the uncertainty of its impact: A probabilistic concept for risk assessment in forestry. Ecological Modelling 316: 211-216. DOI: 10.1016/j.ecolmodel.2015.08.014 Mellert K.H., Ewald J., Hornstein D., Dorado-Li-án I., Jantsch M., Taeger S., Zang C., Menzel A., Kölling C., 2016. Climatic marginality: a new metric for the susceptibility of tree species to warming exemplified by Fagus sylvatica (L.) and Ellenberg's quotient. European Journal of Forest Research 135: 137-152. DOI: 10.1007/s10342-015-0924-9 Mette T., Dolos K., Meinardus C., Bräuning A., Reineking B., Blaschke M., Pretzsch H., Beierkuhnlein C., Gohlke A., Wellstein C., 2013. Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4(12): Article 145. DOI: 10.1890/ES13-00115.1 Metz J., Annighöfer P., Schall P., Zimmermann J., Kahl T., Schulze E.-D., Ammer C., 2016. Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Global Change Biology 22: 903-920. DOI: 10.1111/gcb.13113 Murtagh F., Legendre P., 2014. Ward's hierarchical agglomerative clustering method: which algorithms implement Ward's criterion? Journal of Classification 31: 274-295. DOI: 10.1007/s00357-014-9161-z Patricelli D., Sielezniew M., Ponikwicka-Tyszko D., Ratkiewicz M., Bonelli S., Barbero F., Witek M., Bu´s M.M., Rutkowski R., Balletto E., 2013. Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by Wolbachia. BMC Evol Biol 13: 14. DOI: 10.1186/1471-2148-13-14 Pătroescu M., Chincea I., Rozylowicz L., Sorescu C. (eds.), 2007. Padurile cu pin negru de Banat (Pinus nigra ssp. banatica) sit Natura 2000 [Forests with Banat black pine Natura 2000 Site]. Timisoara, Editura Brumar, 353 p. URL: Accessed: 02.06.2016. Pop I., Ardelean M., Codoreanu V., Crisan A., Cristea V., Csuros M., Csuros S., Ghisa E., Hodisan I., Ratiu E., Szasz E., 1978. Flora si vegetatia Muntilor Zarand [The flora and vegetation of Zarand Mountains]. Contrib. Bot. Cluj-Napoca, 1-215. Rigling A, Bigler C, Eilmann B, Feldmeyer-Christe B, Gimmi U, Ginzler C, Graf U, Mayer P, Vacciano G, Weber, P, Wohlgemuth T, Zweifel R, Dobbertin M., 2013. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology 19: 229–240. DOI: 10.1111/gcb.12038 Roleček J., 2005. Vegetation types of dry-mesic oak forests in Slovakia. Preslia 77: 241-261. Rose L., Leuschner C., Köckemann B., Buschmann H., 2009. Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? European Journal of Forest Research 128: 335-343. DOI: 10.1007/s10342-009-0268-4 Rouget M., Richardson D.M., Lavorel S., Vayreda J., Gracia C., Milton S.J., 2001. Determinants of distribution of six Pinus species in Catalonia, Spain. Journal of Vegetation Science 12: 491-502. DOI: 10.2307/3237001 Scharnweber T., Manthey M., Criegee C., Bauwe A., Schröder C., Wilmking M., 2011. Drought matters – declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management 262: 947-961. DOI: 10.1016/j.foreco.2011.05.026 Schmidt W., Heinrichs S., 2015. Umwelt- und Nutzungswandel im Kalkbuchenwald (Hordelymo-Fagetum lathyretosum) – Ein Vergleich alter und neuer Vegetationsaufnahmen aus dem Göttinger Wald [Environmental and land use change in beech forests on limestone (Hordelymo-Fagetum lathyretosum) - A comparison of old and recent vegetation surveys from the Göttinger Wald]. Hercynia N. F. 48: 21-50. Schulze E.-D., Aas G., Grimm G.W., Gossner M.M., Walentowski H., Ammer C., Kühn I., Bouriaud O., von Gadow K., 2016. A review on plant-diversity and forest management of European beech forests. European Journal of Forest Research 135: 51-67. DOI: 10.1007/s10342-015-0922-y Tegel W., Seim A., Hakelberg D., Hoffmann S., Panev M., Westphal T., Büntgen U., 2014. A recent growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. European Journal of Forest Research 133: 61-71. DOI: 10.1007/s10342-013-0737-7 van der Maarel E., Franklin J. (eds.), 2013. Vegetation Ecology, 2nd Edition. Wiley-Blackwell, Oxford, 572 p. Walentowski H., Bergmeier E. 2009. Geobotanical assessment of forest habitat types of the Habitats Directive in northwestern Turkey. Tuexenia 29: 297-303. Walentowski H., Bergmeier, E., Evers, J., Hetsch, W., Indreica, A., Kroiher, F., Reif, A., Simon, A., Teodosiu, M., 2015. Vegetation und Standorte in Waldlandschaften Rumäniens [Plants and habitats of wooded landscapes in Romania]. Kessel-Verlag, Remagen-Oberwinter, 111 p. Walter H., Breckle S.W., 1985. The law of relative constancy of habitat – ecotypes and ecolines. In Walter H., Breckle S.W. (Eds.), Ecological Systems of the Geobiosphere. Springer, Berlin, Heidelberg, pp. 194-202. DOI: 10.1007/978-3-662-02437-9_9 Zimmermann J., Hauck M., Dulamsuren C., Leuschner C., 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18: 560-572. DOI: 10.1007/s10021-015-9849-x






Research article