Survival and growth of three endangered oak species in a Mexican montane cloud forest


  • Ofelia Andrea Valdés-Rodríguez El Colegio de Veracruz, Carrillo Puerto no. 26, CP 91000, Xalapa Veracruz, Mexico
  • Yureli García-De La Cruz Centro de Investigaciones Tropicales, Universidad Veracruzana, José María Morelos 44, CP 91000, Xalapa, Veracruz, Mexico
  • Brent R. Frey Department of Forestry, Mississippi State University. 775 Stone Boulevard, Mississippi State, Mississippi, United States, 39762



regeneration, seedlings, light gap, closed canopy


Cloud forests are amongst the world’s most impacted and endangered forest types, with Mexican cloud forests amongst the most degraded. These species rich forests are characterized by a diversity of congeneric oak species which dominate the canopy of mature forests. An improved understanding of the establishment requirements of oak seedlings in cloud forests is needed for conservation and restoration purposes. The aim of this study was to assess the influence of light conditions during early establishment of three endangered Quercus species. Seedling growth and biomass allocation in Quercus insignis M. Martens & Galeotti, Q. sartorii Liebm. and Q. xalapensis Bonpl. was determined under two light levels: light gap (1338 µmol m-2 s-1) and closed canopy (118 µmol m-2 s-1) in a cloud forest in Veracruz, Mexico. Growth and development were evaluated over the first 13 months. Results suggest there was a significant effect of light conditions on growth rate and biomass allocation. Although survival rate was similar among both environments, the three species showed lower growth rates under the closed canopy during the first nine months, while elongation rate was higher during the last three months under this environment compared to the light gap. Across all species, fresh biomass and dry biomass of roots, stem and leaves were almost 50% higher in light gap than under closed canopy. Q. insignis produced more biomass in shoots and roots than Q. sartorii and Q. xalapensis, which may increase its establishment success in shaded conditions. Results suggest that these three oak species are suited to planting in small gaps, but also in shaded understory conditions, as high early survival (>90%) may allow enrichment planting in advance of gap creation.


Alfonso-Corrado C., Campos J.E., Mendoza A., Aguirre-Hidalgo V., Valencia-Davalos S., González-Adame G., Wooden Garvey F., Clark-Tapia R. 2014. Restoration-focused germination and development of fivee central mexican oak species. Open Journal of Forestry 4: 171-180. DOI: 10.4236/ojf.2014.43023 Álvarez-Aquino C., Williams-Linera G., Newton A.C., 2004. Experimental native tree seedlings establishment for the restoration of a Mexican cloud forest. Restoration Ecology: 12(3): 412–418. DOI: 10.1111/j.1061-2971.2004.00398.x Ashton P.M.S., Berlyn C.P., 1994. A comparison of leaf physiology and anatomy of Quercus (Section Erythrobalanus-Fagaceae) species in different light environments. American Journal of Botany 81(5): 589–597. DOI: 10.2307/2445734 Augspurger C.K., 1984. Light requirements of neotropical tree seedlings: a comparative study of growth and survival. Journal of Ecology 72(3): 777–795. DOI: 10.2307/2259531 Bubb P., May I., Miles L., Sayer, J., 2004. Cloud forest agenda. UNEP-WCMC, Cambridge, United Kingdom, 36 p. Castillo-Campos G., Luna V.E., 2009. Flora y vegetación del municipio de Coatepec, Veracruz. [Flora and vegetation of the municipality of Coatepec, Veracruz]. Flora de Vera­cruz. Instituto de Ecología, A.C., Centro de Investiga­ciones Tropicales, Universidad Veracruzana, México, 281 p. Colbert, J.J., Schuckers, M. and Fekedulegn, D., 2003. Comparing models for growth and management of forest tracts. In: Amaro A., Reed D., Soares P. (eds.), Modelling forest systems, pp. 335-346. DOI: 10.1079/9780851996936.0335 Danner B.T., Knapp A.K., 2001. Carbon and water relations of juvenile Quercus species in tall-grass prairie. Journal of Vegetation Science 12(6): 807–816. DOI: 10.2307/3236868 Dillaway D.N., Stringer J.W., Rieske L.K., 2007. Light availability influences root carbohydrates, and potentially vigor, in white oak advance regeneration. Forest Ecology and Management 250(3): 227–233. DOI: 10.1016/j.foreco.2007.05.019 Fenner M., Thompson K., 2005. The ecology of seeds. Cambridge University Press. DOI: 10.1017/CBO9780511614101 Figueroa-Rangel B.L., Olvera-Vargas M., 2000. Regeneration patterns in relation to canopy species composition and site variables in mixed oak forests in the Sierra de Manantlán Biosphere Reserve, Mexico Ecological Research 15: 249-261. DOI: 10.1046/j.1440-1703.2000.00346.x García M.E., 1973. Modificaciones al sistema de clas­ificación climática de Köppen. [Modifications to Köppen’s climate classification system]. Universidad Nacional Autónoma de México, México, 146 p. García de la Riva E., Pérez-Ramos I., Navarro Fernández C., Olmo M., Marañón M., Villar R., 2014. Rasgos fun­cionales en el género Quercus: estrategias adquisitivas frente a conservativas en el uso de recursos. [Functional traits in the Quercus genus: acquisitive versus conservative resource-use strategies]. Ecosiste­mas 23(2): 82-89. DOI: 10.7818/ECOS.2014.23-2.11 Gardiner E.S., Hodges J.D., 1998. Growth and biomass distribution of cherrybark oak (Quercus pagoda Raf.) seedlings as influenced by light availability. Forest Ecology and Management 108(1–2): 127–134. DOI: 10.1016/S0378-1127(98)00220-5 Givnish T.J., 1988. Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology 15: 63–92. DOI: 10.1071/PP9880063 Gómez-Aparicio L., Valladares F., Zamora R., 2006. Differential light responses of Mediterranean tree saplings: linking ecophysiology with regeneration niche in four co-occurring species. Tree Physiology 26(7): 947–958. DOI: 10.1093/treephys/26.7.947 González-Espinosa M., MeaveJ.A., Lorea-Hernández, F.G., Ibarra-Manríquez, G., & Newton, A.C. 2011. The Red List of Mexican cloud forest trees. Fauna and Flora International, BGCI Plants for the Planet, Global Trees Campaign, IUCN and SSC Species Survival Commission. Cambridge, United Kingdom. 149 p. Gribko L., Schuler T., Ford W., 2002. Biotic and abiotic mechanisms in the establishment of northern red oak seedlings: a review. USDA Forest Service. DOI: 10.2737/NE-GTR-295 Hunt R., Causton D.R., Shipley AP., Askew AP., 2002. A modern tool for classical plant growth analysis. Annals of Botany 90(4): 485-488. DOI: 10.1093/aob/mcf214Kitajima K., Fenner M., 2000. Ecology of seedling regeneration. Seeds: The ecology of regeneration in plant communities, pp. 331–359. DOI: 10.1079/9780851994321.0331 Leck M.A., Outred H.A., 2008. Seedling natural history. In: Leck M. A., Parker T., Simpson R. (eds.), Seedling ecology and evolution. Cambridge, Cambridge University Press, pp. 18–41. DOI: 10.1017/CBO9780511815133.004 López-Barrera F., Mansons R.H., González-Espinosa M., Newton A.C., 2006. Effects of the type of montane forest edge on oak seedling establishment along forest-edge-exterior gradients. Forest Ecology and Management 225: 234-244. DOI: 10.1016/j.foreco.2005.12.055 Montes-Hernández B., López-Barrera F., 2013. Seedling establishment of Quercus insignis: a critically endangered oak tree species in southern Mexico. Forest Ecology and Management 310: 927–934. DOI: 10.1016/j.foreco.2013.09.044 Ortega-Pieck A., López-Barrera F., Ramírez-Marcial N., García-Franco J.G., 2011. Early seedling establishment of two tropical montane cloud forest tree species: The role of the native and exotic grasses. Forest Ecology and Management 261 (7): 1336-1343. DOI: 10.1016/j.foreco.2011.01.013 Poorte H., Nagel O., 2000. The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review. IMF Occasional Papers 27(12):1191. Poorter L., 2001. Light-dependent changes in biomass allocation and their importance for growth of rain forest tree species. Functional Ecology 15: 113–123. DOI: 10.1046/j.1365-2435.2001.00503.x Ramírez-Bamonde E.S., Sánchez-Velásquez L.R., Andrade-Torres A., 2005. Seedling survival and growth of three species of mountain cloud forest in Mexico, under different canopy treatments. New Forests 30(1): 95–101. DOI: 10.1007/s11056-004-5397-5 Saldaña-Acosta A., Meave J.A. Sánchez-Velásquez L.R., 2009. Seedling biomass allocation and vital rates of cloud forest tree species: Responses to light in sombra house conditions. Forest Ecology and Management 258: 1650-1659. DOI: 10.1016/j.foreco.2009.07.027 SEMARNAT., 2013. Inventario Estatal Forestal y de Sue­los. [Forest and Soils State Inventory]. Veracruz de Ignacio de la Llave. Secretaría de Me­dio Ambiente y Recursos Naturales, México, 219 p. Tanouchi H., 1996. Survival and growth of two coexisting evergreen oak species after germination under different light conditions. International Journal of Plant Sciences 157(4): 516-522. DOI: 10.1086/297370 Van Hees A.F.M., 1997. Growth and morphology of pedunculate oak (Quercus robur L) and beech (Fagus sylvatica L) seedlings in relation to shading and drought. Annales des Sciences Forestières 54: 9-18. DOI: 10.1051/forest:19970102 Valladares F., Chico J., Aranda I., Balaguer L., Dizengremel P., Manrique E., Dreyer E., 2002. The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16: 395-403. DOI: 10.1007/s00468-002-0184-4 Welander N.T., Ottonson B., 1998. The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. Forest Ecology and Management 107: 117–126. DOI: 10.1016/S0378-1127(97)00326-5 Williams-Linera G., 2007. El bosque de niebla del centro de Veracruz: ecología, historia, destino en tiempos de fragmentación y cambio climático. [The cloud forest of central Veracruz: ecology, history, destiny in times of fragmentation and climate change]. CONABIO-Institu­to de Ecología A.C., Xalapa, Veracruz, México, 208 p. Williams-Linera G., Manson R.H., Isunza-Vera E., 2002. La fragmentación del bosque mesófilo de montaña y patrones de uso del suelo en la región oeste de Xalapa, Veracruz, México. [Fragmentation of cloud forest and land use patterns in the western region of Xalapa, Veracruz, Mexico]. Maderas y Bosques 8(1): 73-89.






Research article