Assessing future suitability of tree species under climate change by multiple methods: a case study in southern Germany


  • Helge Walentowski University of Applied Sciences and Arts Hildesheim/Holzminden/Göttingen, Faculty of Resource Management, Büsgenweg 1a, 37077 Göttingen, Germany
  • Wolfgang Falk Bavarian Forestry Institute LWF, Department of Soil and Climate, Hans-Carl-von-Carlowitz-Platz 1, 85354 Freising & Institute of Geoecology, Dept. of Environmental System Analysis, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
  • Tobias Mette Institute of Geoecology, Department of Environmental System Analysis, TU Braunschweig, Langer Kamp 19c, 38106 Braunschweig, Germany
  • Jörg Kunz Department of Silviculture, Faculty of Environment and Natural Resources, Albert-Ludwig-University Freiburg, Tennenbacherstraße 4, 79106 Albert-Ludwigs-Universität Freiburg, Germany
  • Achim Bräuning Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058 Erlangen, Germany
  • Cathrin Meinardus Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wetterkreuz 15, 91058 Erlangen, Germany
  • Christian Zang Land Surface-Atmosphere Interactions, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
  • Laura M.E. Sutcliffe Department of Plant Ecology and Ecosystem Research, Georg-August-University Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
  • Christoph Leuschner Department of Plant Ecology and Ecosystem Research, Georg-August-University Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany



broadleaf forests, climate modelling, dendrochronology, drought tolerance, ecological niche, Ellenberg Indicator Values


We compared results derived using three different approaches to assess the suitability of common tree species on the Franconian Plateau in southern Germany under projected warmer and drier climate conditions in the period 2061-2080. The study area is currently a relatively warm and dry region of Germany. We calculated species distribution models (SDMs) using information on species’ climate envelopes to predict regional species spectra under 63 different climate change scenarios. We complemented this with fine-scale ecological niche analysis using data from 51 vegetation surveys in seven forest reserves in the study area, and tree-ring analysis (TRA) from local populations of five tree species to quantify their sensitivity to climatic extreme years. The SDMs showed that predicted future climate change in the region remains within the climate envelope of certain species (e.g. Quercus petraea), whilst for e.g. Fagus sylvatica, future climate conditions in one third of the scenarios are too warm and dry. This was confirmed by the TRA: sensitivity to drought periods is lower for Q. petraea than for F. sylvatica. The niche analysis shows that the local ecological niches of Quercus robur and Fraxinus excelsior are mainly characterized by soils providing favorable water supply than by climate, and Pinus sylvestris (planted) is strongly influenced by light availability. The best adapted species for a warmer and potentially drier climate in the study region are Acer campestre, Sorbus torminalis, S. aria, Ulmus minor, and Tilia platyphyllos, which should therefore play a more prominent role in future climate-resilient mixed forest ecosystems.


Abs C., Ewald J., Walentowski H., Winter S., 2008. Untersuchung der Schattentoleranz von Baumarten auf Grundlage der Datenbank bayerischer Naturwaldreservate. Tuexenia 28: 23-40.

Austin M.P., Gaywood M.J., 1994. Current problems of environmental gradients and species response curves in relation to continuum theory. Journal of Vegetation Science 5: 473-482. DOI: 10.2307/3235973

Austin M.P., Van Niel K.P., 2011. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography 38: 1-8. DOI: 10.1111/j.1365-2699.2010.02416.x

Bahn M., Reichstein M., Guan K., Moreno J.M., Williams C., 2015. Preface: Climate extremes and biogeochemical cycles in the terrestrial biosphere: impacts and feedbacks across scales. Biogeosciences 12: 4827-4830. DOI: 10.5194/bg-12-4827-2015

Bartlett M.K., Scoffoni C., Sack L., 2012. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15: 393–405. DOI: 10.1111/j.1461-0248.2012.01751.x

Bertrand R., Perez V., Gégout J.C., 2012. Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change: the case of Quercus pubescens in France. Global Change Biology 18: 2648-2660. DOI: 10.1111/j.1365-2486.2012.02679.x

Bigler C., Bugmann H., 2003. Growth-dependent tree mortality models based on tree rings. Canadian Journal of Forest Research 33: 210-221. DOI: 10.1139/x02-180

Bohn U., Neuhäusl R., Gollub G., Hettwer C., Neuhäuslová Z., Schlüter H., Weber H (ed.), 2000-2003. Karte der natürlichen Vegetation Europas. Maßstab 1:2,500,000. Teil 1-3. Landwirtschaftsverlag, Münster, 655 p.

Bolte A., Czajkowski T., Kompa T., 2007. The north-eastern distribution range of European beech - a review. Forestry 80: 413-429. DOI: 10.1093/forestry/cpm028

Bolte A., Czajkowski T., Cocozza C., Tognetti R., de Miguel M., Pšidová E., Ditmarová Ĺ., Dinca L., Delzon S., Cochard H., Ræbild A., de Luis M., Cvjetkovic B., Heiri C., Müller J., 2016. Desiccation and mortality dynamics in seedlings of different European beech (Fagus sylvatica L.) populations under extreme drought conditions. Frontiers in Plant Science 7: 751. DOI: 10.3389/fpls.2016.00751

Bouriaud O., Popa I., 2009. Comparative dendroclimatic study of Scots pine, Norway spruce, and silver fir in the Vrancea Range, Eastern Carpathian Mountains. Trees 23: 95-106. DOI: 10.1007/s00468-008-0258-z

Brang P., Bugmann H., Bürgi A., Mühlethaler U., Rigling A., Schwitter R., 2008. Klimawandel als waldbauliche Herausforderung. Schweizerische Zeitschrift für Forstwesen 159: 362-373. DOI: 10.3188/szf.2008.0362

Bréda N., Huc R., Granier A., Dreyer E., 2006. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaption processes and long-term consequences. Annals of Forest Science 63: 625-644. DOI: 10.1051/forest:2006042

Bunn A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26: 115-124. DOI: 10.1016/j.dendro.2008.01.002

Cavin L., Mountford E.P., Peterken G.F., Jump A.S., 2013. Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Functional Ecology 27: 1424-1435. DOI: 10.1111/1365-2435.12126

Cedro A., Cedro B., 2015. Growth-climate relationships at yew and wild service trees on the eastern edge of their range in Europe. Forest Systems 24: e044. DOI: 10.5424/fs/2015243-07480

Cedro A., 2016. The influence of climatic conditions on the tree-ring width of wild service trees (Sorbus torminalis L.) in Wielkopolska. Forest Research Papers 77: 117-123. DOI: 10.1515/frp-2016-0013

Chakraborty D., Wang T., Andre K., Konnert M., Lexer M.J., Matulla C., Schueler S., 2015. Selecting populations for non-analogous climate conditions using Universal Response Functions: The Case of Douglas-Fir in Central Europe. PloS one 10: e0136357. DOI: 10.1371/journal.pone.0136357

Ciais P., Reichstein M., Viovy N., Granier A., Ogée J., Allard V., Aubinet M., Buchmann N., Bernhofer C., Carrara A., Chevallier F., De Noblet N., Friend A.D., Friedlingstein P., Grünwald T., Heinesch B., Keronen P., Knohl A., Krinner G., Loustau D., Manca G., Matteucci G., Miglietta F., Ourcival J.M., Papale D., Pilegaard K., Rambal S., Seufert G., Soussana J.F., Sanz M.J., Schulze E.D., Vesala T., Valentini R., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533. DOI: 10.1038/nature03972

Cook E.R., 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin 47: 37-59.

Cook E.R., Briffa K.R., Shiyatov S., Mazepa A., Jones P.D., 1990. Data analysis. In Cook, E.R., Kairiukstis, L.A. (ed.), Methods of Dendrochronology: Applications in the Environmental Sciences. Kluwer Academic Publishers, Dodrecht, pp. 97-162. DOI: 10.1007/978-94-015-7879-0_3

Cook E.R., Peters K., 1997. Calculating unbiased tree-ring indices for the study of climatic and environmental change. The Holocene 7: 361-370. DOI: 10.1177/095968369700700314

Coudun C., Gégout J.C., Piedallu C., Rameau J.C., 2006. Soil nutritional factors improve models of plant species distribution: an illustration with Acer campestre (L.) in France. Journal of Biogeography 33: 1750-1763. DOI: 10.1111/j.1365-2699.2005.01443.x

Coumou D., Rahmstorf S., 2012. A decade of weather extremes. Nature Climate Change 2: 491-496. DOI: 10.1038/nclimate1452

Dierschke H., 1994. Pflanzensoziologie - Grundlagen und Methoden. Ulmer, Suttgart, 683 p.

Dittmar C., Lieber K.-H., Rothe A., Zang C., 2012. Tanne im Weinbauklima. AFZ-DerWald 67: 4-7.

Dittmar C., Zech W., Elling W., 2003. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe - a dendroecological study. Forest Ecology and Management 173: 63-78. DOI: 10.1016/S0378-1127(01)00816-7

Dufrêne M., Legendre P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345-366. DOI: 10.2307/2963459

Eilmann B., Weber P., Rigling A., Eckstein D. 2006. Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland. Dendrochronologia 23: 121-132. DOI: 10.1016/j.dendro.2005.10.002

Eilmann B., Sterck F., Wegner L., de Vries S.M., von Arx G., Mohren G.M., den Ouden J., Sass-Klaassen U., 2014. Wood structural differences between northern and southern beech provenances growing at a moderate site. Tree Physiology 34: 882–893. DOI: 10.1093/treephys/tpu069

Elith J., Leathwick J.R., Hastie T., 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802-813. DOI: 10.1111/j.1365-2656.2008.01390.x

Ellenberg H., Leuschner C., 2010. Vegetation Mitteleuropas mit den Alpen. 6th ed., Ulmer, Stuttgart, 1333 p.,

Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W., 2001. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1-262.

European Commission, 2000. EUR 19550 – COST Action E4 – Forest reserves research network. Office for Official Publications of the European Communities, Luxembourg, 377 p.

Ewald J., 2007. Beurteilung von Waldstandorten und Waldgesellschaften mit Zeigerarten-Ökogrammen. Tuexenia 27: 7-18.

Falk W., Hempelmann, N., 2013. Species Favourability Shift in Europe due to climate change: A case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. Journal of Climatology 2013: Article ID 787250. DOI: 10.1155/2013/787250

Falk W., Mellert K.H., 2011. Species distribution models as a tool for forest management planning under climate change: risk evaluation of Abies alba in Bavaria. Journal of Vegetation Science 22: 621-634. DOI: 10.1111/j.1654-1103.2011.01294.x

Fanelli G., Pignatti S., Testi A., 2007. An application case of ecological indicator values (Zeigerwerte) calculated with a simple algorithmic approach. Plant Biosystems 141: 15-21. DOI: 10.1080/11263500601153685

Fensham R.J., Bouchard D.L., Catterall C.P., Dwyer, J.M., 2014. Do local moisture stress responses across tree species reflect dry limits of their geographic ranges? Austral Ecology 39: 612-618. DOI: 10.1111/aec.12125

Fini A., Ferrini F., Frangi P., Amoroso G., Piatti R., 2009. Withholding irrigation during the establishment phase affected growth and physiology of Norway Maple (Acer platanoides) and Linden (Tilia spp.). Arboriculture & Urban Forestry 35: 241-251.

Franklin J., 2010. Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge, 320 p. DOI: 10.1017/CBO9780511810602

Freeman E.A., Moisen G.G., 2008a PresenceAbsence: an R package for PresenceAbsence analysis. Journal of Statistical Software 23: 1-31. DOI: 10.18637/jss.v023.i11

Freeman E.A., Moisen G.G., 2008b. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecological Modelling 217: 48-58. DOI: 10.1016/j.ecolmodel.2008.05.015

Friedrichs D.A., Trouet V., Büntgen U., Frank D.C., Esper J., Neuwirth B., Löffler J., 2009. Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23: 729-739. DOI: 10.1007/s00468-009-0315-2

Fritts H.C., 1976. Tree Rings and Climate. Academic Press, London, 567 p.

Gillner S., Bräuning A., Roloff A., 2014. Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species. Trees 28: 1079-1093. DOI: 10.1007/s00468-014-1019-9

Guisan A., Zimmermann N.E., Elith J., Graham C.H., Phillips S., Peterson A.T., 2007. What matters for predicting the occurrences of trees: techniques, data, or species' characteristics? Ecological Monographs 77: 615-630. DOI: 10.1890/06-1060.1

Härdtle W., Ewald J., Hölzel N., 2004. Wälder des Tieflandes und der Mittelgebirge. Ulmer, Stuttgart, 252 p.

Hanewinkel M., Cullmann D.A., Michiels H.G., Kändler G., 2014. Converting probabilistic tree species range shift projections into meaningful classes for management. Journal of Environmental Management 134: 153-165. DOI: 10.1016/j.jenvman.2014.01.010

Hanewinkel M., Cullmann D.A., Schelhaas M.J., Nabuurs G.J., Zimmermann N.E., 2013. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change 3: 203-207. DOI: 10.1038/nclimate1687

Hemery G.E., 2008. Forest management and silvicultural responses to projected climate change impacts on European broadleaved trees and forests. International Forestry Review 10: 591-607. DOI: 10.1505/ifor.10.4.591

Herrero A., Rigling A., Zamora R., 2013. Climate-tree growth analysis at the drought-linked distribution edge of Pinus sylvestris and Pinus nigra. Forest Ecology and Management 308: 50-61. DOI: 10.1016/j.foreco.2013.07.034

Hiederer R., Michéli E., Durrant T., 2011. Evaluation of BioSoil. Demonstration Project. Soil Data Analysis. Publications Office of the European Union, Luxembourg, 155 p.

Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. DOI: 10.1002/joc.1276

Hill M.O., Gauch H.G., 1980. Detrended Correspondence Analysis: an improved ordination technique. Vegetatio 42: 47-58. DOI: 10.1007/BF00048870

Hirzel A.H., Le Lay G., 2008. Habitat suitability modelling and niche theory. Journal of Applied Ecology 45: 1372-1381. DOI: 10.1111/j.1365-2664.2008.01524.x

Hofmann W., 1964-65. Laubwaldgesellschaften der Fränkischen Platte - Eine vegetationskundliche, pflanzengeografische und bodenkundliche Untersuchung. Abhandlungen des Naturwissenschaftlichen Vereins Würzburg 5/6: 1-195.

IPCC, 2013. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1535 p.

Jahn G., 1991. Temperate deciduous forests of Europe. In Röhrig E., Ulrich B., (ed.). Temperate deciduous forests. Ecosystems of the world. Elsevier, Amsterdam, pp. 377-502.

Kint V., Aertsen W., Campioli M., Vansteenkiste D., Delcloo A., Muys B., 2012. Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901-2008. Climatic Change 115: 343-363. DOI: 10.1007/s10584-012-0465-x

Klemmt H.-J., Reger B., Falk W., Kunz J., 2015. Der Feldahorn - Vorkommen und Wachstum in Bayern. LWF Wissen 77: 30-39.

Kölling C., 2007. Klimahüllen für 27 Waldbaumarten. AFZ-DerWald 62: 1242-1245.

Kunz J., Pyttel P., Grüner J., Bauhus J., 2011. Rindenschäden und Holzfäuleerreger an Elsbeere. AFZ-DerWald 66: 14-17.

Kunz J., Räder A., Bauhus J., 2016. Effects of drought and rewetting on growth and gas exchange of minor European broadleaved tree species. Forests 7: 239. DOI: 10.3390/f7100239

Leuschner C., Backes K., Hertel D., Schipka F., Schmitt U., Terborg O., Runge M., 2001. Drought responses at leaf, stem and fine root levels of competitive Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. trees in dry and wet years. Forest Ecology and Management 149: 33-46. DOI: 10.1016/S0378-1127(00)00543-0

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., Seidl R., Delzon S., Corona P., Kolström M., Lexer M.J., Marchetti M., 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698-709. DOI: 10.1016/j.foreco.2009.09.023

Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., Schelhaas, M.J., Lasch, P., Eggers, J., van der Maaten-Theunissen, M., Suckow, F., Psomas, A., Poulter, B., Hanewinkel, M., 2014. Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management 146: 69-83. DOI: 10.1016/j.jenvman.2014.07.030

Lloret F., Keeling E.G., Sala A., 2011. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120: 1909-1920. DOI: 10.1111/j.1600-0706.2011.19372.x

Lorenz M., 1995. International co-operative programme on assessment and monitoring of air pollution effects on forests - ICP forests. Water, Air, & Soil Pollution 85: 1221-1226. DOI: 10.1007/BF00477148

Mátyás C., Nagy L., Jármay E.U., 2009. Genetic Background of Response of Trees to Aridification at the Xeric Forest Limit and Con-sequences for Bioclimatic Modelling. In Strelcová K., Mátyás C., Kleidon A., Lapin M., Matejka F., Blazenec M., Škvarenina J., Holecy J. (ed.), Bioclimatology and Natural hazards. Springer, Berlin, pp. 179-196. DOI: 10.1007/978-1-4020-8876-6_16

Mayer H., 1984. Waldbau auf soziologisch-ökologischer Grundlage. 3rd edn., Fischer, Stuttgart, 513 p.

McCune B., Grace J.B., 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, 300 p.

McDowell N., Pockman W.T., Allen C.D., Breshears D.D., Cobb N., Kolb T., Plaut J., Sperry J., West A., Williams D.G., Yepez E.A., 2008. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist 178: 719-739. DOI: 10.1111/j.1469-8137.2008.02436.x

Meinardus C., Bräuning A., 2011. Zur Trockenstresstoleranz von Eichen und Buchen. LWF aktuell 85: 9-11.,

Mellert K.H., Deffner V., Küchenhoff H., Kölling C., 2015. Modeling sensitivity to climate change and estimating the uncertainty of its impact: a probabilistic concept for risk assessment in forestry. Ecological Modelling 316: 211-216.

DOI: 10.1016/j.ecolmodel.2015.08.014

Mellert K.H., Fensterer V., Küchenhoff H., Reger B., Kölling C., Klemmt H.J., Ewald J., 2011. Hypothesis-driven species distribution models for tree species in the Bavarian Alps. Journal of Vegetation Science 22: 635-646. DOI: 10.1111/j.1654-1103.2011.01274.x

Melman T.C.P., Clausman P.H.M.A., de Haes U.H.A., 1988. The testing of three indicator systems for trophic state in grasslands. Vegetatio 75: 143-152.

Mette T, Dolos K., Meinardus C., Bräuning A., Reineking B., Blaschke M., Pretzsch H., Beierkuhnlein C., Gohlke A., Wellstein C., 2013. Climatic turning point for beech and oak under climate change in Central Europe. Ecosphere 4: 145. DOI: 10.1890/ES13-00115.1

Mette T., Falk W., Uhl E., Biber P., Pretzsch H., 2015. Increment allocation along the stem axis of dominant and suppressed trees in reaction to drought - results from 123 stem analyses of Norway spruce, Scots pine and European beech. Austrian Journal of Forest Science 132: 223-238.

Michelot A., Bréda N., Damesin C., Dufrêne E., 2012. Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. Forest Ecology and Management 265: 161-171. DOI: 10.1016/j.foreco.2011.10.024

Nardini A., Dimasi F., Klepsch M., Jansen, S., 2012. Ion-mediated enhancement of xylem hydraulic conductivity in four Acer spe-cies: relationships with ecological and anatomical features. Tree Physiology 32: 1434-1441. DOI: 10.1093/treephys/tps107

Niinemets Ü., Valladares F., 2006. Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs 76: 521-547. DOI: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2

Oberdorfer E. (ed.), 1992. Süddeutsche Pflanzengesellschaften, Teil 4: Wälder und Gebüsche. 2nd edn., Fischer, Jena, 862 p.

Ogle K., Whitham T.G., Cobb N.S., 2000. Tree-ring variation in pinyon predicts likelihood of death following severe drought. Ecology 81: 3237-3243. DOI: 10.1890/0012-9658(2000)081[3237:TRVIPP]2.0.CO;2

Okland R.H., 1996. Are ordination and constrained ordination alternative or complementary strategies in general ecological studies. Journal of Vegetation Science 7: 289-292. DOI: 10.2307/3236330

Pearson R.G., Dawson T.P., 2003. Predicting the impact of climate change and the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12: 361-371. DOI: 10.1046/j.1466-822X.2003.00042.x

Peck J.E., 2010. Multivariate Analysis for Community Ecologists: Step-by-Step using PC-ORD. MjM Software Design, Gleneden Beach, 162 p.

Peterson A.T., Soberón J., Pearson R.G., Anderson R.P., Martínez-Meyer E., Nakamura M., Araújo M.B., 2011. Ecological Niches and Geographic Distributions. Princeton University Press, Princeton, 314 p.

Piedallu C., Gégout J.-C., Perez V., Lebourgeois F., 2013. Soil water balance performs better than climatic water variables in tree spe-cies distribution modelling. Global Ecology and Biogeography 22: 470-482. DOI: 10.1111/geb.12012

Polley H., Schmitz F., Hennig P., Kroiher F., 2010. National forest inventories: chapter 13, Germany. In Tomppo E., Gschwantner T., Lawrence M., McRoberts R.E. (ed.), National Forest Inventories - Pathways for Common Reporting. Springer, New York, pp. 223-243.,

Pretzsch H., Schütze G., Uhl E., 2013. Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biology 15: 483-495. DOI: 10.1111/j.1438-8677.2012.00670.x

Pudlatz H., 1975. Zur Transformation der Variablen bei mangelnder Normalverteilung. Gießener Geographische Schriften 32: 29-33.

Pyttel P., Kunz J., Bauhus J., 2013. Growth, regeneration and shade tolerance of the Wild Service Tree (Sorbus torminalis (L.) Crantz) in aged oak coppice forests. Trees 27: 1609-1619. DOI: 10.1007/s00468-013-0908-7

Quiring S.M., 2009. Monitoring drought: an evaluation of meteorological drought indices. Geography Compass 3: 64-88. DOI: 10.1111/j.1749-8198.2008.00207.x

Real R., Barbosa A.M., Vargas J.M., 2006. Obtaining environmental favourability functions from logistic regression. Environmental and Ecological Statistics 13: 237-245. DOI: 10.1007/s10651-005-0003-3

Rigling A., Bigler C., Eilmann B., Mayer P., Ginzler C., Vacchiano G., Weber P., Wohlgemuth T., Zweifel R., Dobbertin M., 2013. Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Global Change Biology 19: 229-240. DOI: 10.1111/gcb.12038

Schaffers A.P., Sýkora K.V., 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11: 225-244. DOI: 10.2307/3236802

Scharnweber T.M., Manthey M., Criegee C., Bauwe A., Schröder C., Wilmking M., 2011. Drought matters: Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in northeastern Germany. Forest Ecology and Management 262: 947-961. DOI: 10.1016/j.foreco.2011.05.026

Schmidtlein S., Ewald J., 2003. Landscape patterns of indicator plants for soil acidity in the Bavarian Alps. J Biogeography 30: 1493-1503. DOI: 10.1046/j.1365-2699.2003.00879.x

Schrötter H., 2001. Vogelkirsche, Spitzahorn und Elsbeere: Drei wertvolle Baumarten in Mecklenburg-Vorpommern im Abseits. Forst und Holz 56:188-196.

Schueler S., Falk W., Koskela J., Lefèvre F., Bozzano M., Hubert J., Kraigher H., Longauer R., Olrik D.C., 2014. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Global Change Biology 20: 1498-1511. DOI: 10.1111/gcb.12476

Schuldt B., Knutzen F., Delzon S., Jansen S., Müller-Haubold H., Burlett R., Clough Y., Leuschner C., 2016. How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytologist 210: 443-458. DOI: 10.1111/nph.13798

Schweingruber F.H., 1988. Tree rings. Basics and applications of dendrochronology. Reidel, Dordrecht, 276 p.

Seneviratne, S.I., Nicholls N., Easterling D., Goodess C.M., Kanae S., Kossin J., Luo Y., Marengo J., McInnes K., Rahimi M., Reichstein M., Sorteberg A., Vera C., Zhang X., 2012. Changes in climate extremes and their impacts on the natural physical envi-ronment. In Field C.B., Barros V., Stocker T.F., Qin D., Dokken D.J., Ebi K.L., Mastrandrea M.D., Mach K.J., Plattner G.-K., Allen S.K., Tignor M.Midgley P.M. (eds.). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC SREX Report). Cambridge University Press, Cambridge, pp.109-230.

Sharpe P.J., 1990. Forest modeling approaches: compromises between generality and precision. In Dixon R.K. (ed.). Process Model-ing of Forest Growth Responses to Environmental Stress. Timber Press, Portland, pp. 180-190.

Taeger S., Kölling C., 2016. Standortinformationssystem BaSIS. AFZ-DerWald 71: 10-13.

Thuiller W., Lafourcade B., Engler R., Araújo M.B., 2009. BIOMOD - a platform for ensemble forecasting of species distributions. Ecography 32: 369-373. DOI: 10.1111/j.1600-0587.2008.05742.x

Tissier J., Lambs L., Peltier J.P., Marigo G., 2004. Relationships between hydraulic traits and habitat preference for six Acer species occurring in the French Alps. Annals of Forest Science 61: 81-86. DOI: 10.1051/forest:2003087

Trenberth K.E., 2010. Changes in precipitation with climate change. Climate Research 47: 123-138. DOI: 10.3354/cr00953

Van Valen L., 1976. Ecological species, multispecies, and oaks. Taxon 25: 233-239. DOI: 10.2307/1219444

Vicente-Serrano S.M., Beguería S., López-Moreno J.I., 2010. A multiscalar drought index sensitive to global warming: The Standard-ized Precipitation Evapotranspiration Index. Journal of Climate 23: 1696-1718. DOI: 10.1175/2009JCLI2909.1

Walentowski H., Ewald J., Fischer A., Kölling C., Türk W., 2013. Handbuch der natürlichen Waldgesellschaften Bayerns. 3rd edn, Geobotanica, Freising, 441 p.

Walentowski H., Kudernatsch T., Fischer A., Ewald J., 2014. Naturwaldreservatsforschung in Bayern - Auswertung von Vegeta-tionsdaten zur waldökologischen Dauerbeobachtung. Tuexenia 34: 89-106.

Ward J.H., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236-244. DOI: 10.1080/01621459.1963.10500845

Weber E., 2003. Invasive plant species of the world. A reference guide to environmental weeds. CABI Publishing, Wallingford, 548 p.

Weber P., Bugmann H., Pluess A.R., Walthert L., Rigling A., 2013. Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees 27: 171-181. DOI: 10.1007/s00468-012-0786-4

Wigley T.M.L., Briffa K.R., Jones P.D., 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23: 201-213.

DOI: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2

Williams A.P., Allen C.D., Macalady A.K., Griffin D., Woodhouse C.A., Meko D.M., Swetnam T.S., Rauscher S.A., Seager R., Grissi-no-Mayer H.D., Dean J.S., Cook E.R., Gangodagamage C., Cai M., McDowell N.G., 2013. Temperature as a potent driver of region-al forest drought stress and tree mortality. Nature Climate Change 3: 292-297. DOI: 10.1038/nclimate1693

Wood S.N., 2006. Generalized Additive Models: An IntroductionWith R. Chapman & Hall / CRC, Boca Raton, 410 p.

Wood S.N., 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 7: 3-36. DOI: 10.1111/j.1467-9868.2010.00749.x

Wood S.N., Augustin N.H., 2002. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecological Modelling 157: 157-177. DOI: 10.1016/S0304-3800(02)00193-X

Xu T., Hutchinson M.F., 2011. ANUCLIM VERSION 6.1 User's Guide. Fenner School of Environment and Society. The Australian National University. Web: Accessed 13 March 2017.

Zelený D., Schaffers A.P., 2012. Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. Journal of Vegetation Science 23: 419-431. DOI: 10.1111/j.1654-1103.2011.01366.x

Zang C., Hartl-Meier C., Dittmar C., Rothe A., Menzel A., 2014. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Global Change Biology 20: 3767-3779. DOI: 10.1111/gcb.12637

Zang C., Rothe A., Weis W., Pretzsch H., 2011. Zur Baumarteneignung bei Klimawandel: Ableitung der Trockenstressanfälligkeit wichtiger Waldbaumarten aus Jahrringbreiten. Allgemeine Forst- und Jagdzeitung 182: 98-112.

Zimmermann J., Hauck M., Dulamsuren C., Leuschner C., 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18: 560-572. DOI: 10.1007/s10021-015-9849-x

Zimmermann N.E., Yoccoz N.G., Edwards Jr. T.C., Meier E.S., Thuiller W., Guisan A., Schmatz D.R., Pearman P.B., 2009. Climatic extremes improve predictions of spatial patterns of tree species. PNAS 106:19723-19728. DOI: 10.1073/pnas.0901643106

Zimmermann N.E., Edwards T.C., Graham C.H., Pearman P.B., Svenning J.C., 2010. New trends in species distribution modelling. Ecography 33: 985-989. DOI: 10.1111/j.1600-0587.2010.06953.x






Research article