Stable isotope ratios and reforestation potential in Acacia koa populations on Hawai’i


  • Shaneka Lawson Purdue University USDA Forest Service
  • Carrie Pike Purdue University USDA Forest Service



Acacia koa, elevation, Hawaiian, isotopes, plasticity


Stable carbon and nitrogen isotopes can be influenced by a multitude of factors including elevation, precipitation rate, season, and temperature. This work examined the variability in foliar stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of koa (Acacia koa) for 17 sites on Hawai’i Island delineated by elevation and precipitation gradients. Sites were identified and grouped with respect to mean annual precipitation (MAP), mean annual temperature (MAT) and position along three elevation ranges. Analysis of the resultant δ13C and δ15N isotope ratios from multiple individuals at these sites indicated that certain sites showed a demonstrated correlation between carbon and/or nitrogen content, isotope ratios, precipitation, and elevation however many sites showed no correlation. We used publicly available temperature and moisture data to help eliminate confounding effects by climatic drivers and capture possible points of contention. At sites where the temperature, precipitation, and elevation data were not significantly different we compared stable isotope information to determine if additional variables could have contributed to the lack of more correlative data. Our results note several areas within the Waiakea Forest Reserve and Volcanoes National Park where, based on isotope results, reforestation efforts could be most successfully initiated.

Author Biography

Shaneka Lawson, Purdue University USDA Forest Service

Purdue University, Adjunct Assisstant Professor, Department of Forestry and Natural ResoucresResearch Plant Physiologist, USDA-Forest Service, Hardwood Tree Improvement and Regeneration CenterSpecial Emphasis Program Manager for African-American Programs at the USDA Northern Research Station 


Abaker WE., Berninger F., Saiz G., Braojos V., Starr M., 2016. Contribution of Acacia senegal to biomass and soil carbon in plantations of varying age in Sudan. Forest Ecology and Management 368:71. DOI: 10.1016/j.foreco.2016.03.003Aitken SN., Yeaman S., Holliday JA., Wang T., Curtis-McLane S., 2008. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1:95-111. DOI: 10.1111/j.1752-4571.2007.00013.xAres A., Fownes JH., Sun W., 2000. Genetic differentiation of intrinsic water‐use efficiency in the Hawaiian native Acacia koa. International Journal of Plant Sciences 161:909-915. DOI: 10.1086/317559Becklin KM., Medeiros JS., Sale KR., Ward JK., 2014. Evolutionary history underlies plant physiological responses to global change since the last glacial maximum. Ecology Letters 17:691-699. DOI: 10.1111/ele.12271Bell BA, Fletcher WJ., Ryan P., Grant H., Ilmen R., 2017. Stable carbon isotope analysis of Cedrus atlantica pollen as an indicator of moisture availability. Review of Paleobotany and Palynology 244:128-139. DOI: ZC., Smith WK., 2012. Cloud pattern and water relations in Picea rubens and Abies fraseri, southern Appalachian Mountains, USA. Agricultural and Forest Meteorology 162-163:27-34. DOI: 10.1016/j.agrformet.2012.04.005Berry ZC., White JC., Smith WK., 2014. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest. Tree Physiology 34:459-470. DOI: 10.1093/treephys/tpu032Bussotti F., Pollastrini M., 2015. Evaluation of leaf features in forest trees: Methods, techniques, obtainable information and limits. Ecological Indicators 52:219-230. DOI: 10.1016/j.ecolind.2014.12.010Čada V., Šantrůčková H., Šantrůček J., Kubištová L., Seedre M., Svoboda M., 2016. Complex physiological response of Norway Spruce to atmospheric pollution – Decreased carbon isotope discrimination and unchanged tree biomass increment. Frontiers in Plant Science 7:805-813. DOI: 10.3389/fpls.2016.00805Cai ZQ., Poorter L., Han Q., Bongers F., 2008. Effects of light and nutrients on seedlings of tropical Bauhinia lianas and trees. Tree Physiology 28:1277-1285. DOI: 10.1093/treephys/28.8.1277Casper BB., Goldman R., Lkhagva A., Helliker BR., Plante AF., Spence LA., Liancourt P., Boldgiv B., Petraitis PS., 2012. Legumes mitigate ecological consequences of a topographic gradient in a northern Mongolian steppe. Oecologia 169:85-94. DOI: 10.1007/s00442-011-2183-xCraine JM., Elmore AJ., Aidar MPM., Bustamante M., Dawson TE., Hobbie EA., Kahmen A., Mack MC., McLauchlan KK., Michelsen A., Nardoto GB., Pardo LH., Penuelas J., Reich PB., Schuur EAG., Stock WD., Templer PH., Virginia RA., Welker JM., Wright IJ., 2009. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist 183:980-992. DOI: 10.1111/j.1469-8137.2009.02917.xCraven D., Gulamhussein S., Berlyn GP., 2010. Physiological and anatomical responses of Acacia koa (Gray) seedlings to varying light and drought conditions. Environmental and Experimental Botany 69:205-213. DOI: 10.1016/j.envexpbot.2010.04.002Deenik J., McClellan AT., 2007. Soils of Hawai’i. Soil and Crop Manage. Cooperative Extension Service University of Hawai’i, Manoa. Soil and Crop Management 20:1-12.Duarte HM., Geßler A., Scarano FR., Franco AC., Mattos, EAD., Nahm M., Rennenberg H., Rodrigues PJFP., Zaluar HLT., Lüttge U., 2005. Ecophysiology of six selected shrub species in different plant communities at the periphery of the Atlantic forest of SE-Brazil. Flora 200:456-476. DOI: 10.1016/j.flora.2005.02.004Farley KA., Bremer LL., Harden CP., Hartsig J., 2012. Changes in carbon storage under alternative land uses in biodiverse Andean grasslands: implications for payment for ecosystem services. Conservation Letters 6:21-27. DOI: 10.1111/j.1755-263X.2012.00267.xGiardina CP., Ryan MG., Binkley D., Fownes JH., 2003. Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Global Change Biology 9:1438-1450. DOI: 10.1046/j.1365-2486.2003.00558.xGithae EW., Gachene CKK., Njoka JT., Omondi SF., 2013. Nitrogen Fixation by Natural Populations of Acacia Senegal in the Drylands of Kenya Using 15 N Natural Abundance. Arid Land Research and Management 27:327-336. DOI: 10.1080/15324982.2013.784377Gulías J., Cifre J., Jonasson S., Medrano H., Flexas J., 2009. Seasonal and inter-annual variations of gas exchange in thirteen woody species along a climatic gradient in the Mediterranean island of Mallorca. Flora 3:169-181. DOI: 10.1016/j.flora.2008.01.011Hagan DL., Jose S., 2011. Interspecific competition enhances nitrogen fixation in an actinorhizal shrub. Plant Ecology 212:63-68. DOI: 10.1007/s11258-010-9803-0.Hall SJ., Hale RL., Baker MA., Bowling DR., Ehleringer JR., 2015. Riparian plant isotopes reflect anthropogenic nitrogen perturbations: robust patterns across land use gradients. Scandinavian Journal of Forest Research 6:1-16. DOI: 10.1890/ES15-00319.1.Hansen D., Steig E., 2016. Comparison of water-use efficiency and internal leaf carbon dioxide concentration in juvenile leaves and phyllodes of Acacia koa (Leguminosae) from Hawai’i, estimated by two methods. American Journal of Botany 80:1121-1125. DOI: P., 1998. Diversity and conservation of epiphytes in a changing environment. Pure and Applied Chemistry 70:23-27. DOI: T., Baker PJ., Meason D., 2007. Indicators of forest ecosystem productivity and nutrient status across precipitation and temperature gradients in Hawai’i. Journal of Tropical Ecology 23:693-704. DOI: 10.1017/S0266467407004439Juday GP., Alix C., Grant TA., 2015. Spatial coherence and change of opposite white spruce temperature sensitivities on floodplains in Alaska confirms early-stage boreal biome shift. Forest Ecology and Management 350:46-61. DOI: 10.1016/j.foreco.2015.04.016Keller J., White J., Bridgham S., Pastor J., 2004. Climate change effects on carbon and nitrogen mineralization in peatlands through changes in soil quality. Global Change Biology 10:1053-1064. DOI: 10.1111/j.1365-2486.2004.00785.xKohn MJ., Thiemens MH., 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo)climate. Proceedings of the National Academy of Sciences USA 107:19691-19695. DOI: 10.1073/pnas.1004933107Kolivras KN., Comrie AC., 2007. Regionalization and variability of precipitation in Hawai’i. Physical Geography 28:76-96.Krushelnycky PD., 2014. Evaluating the Interacting influences of pollination, seed predation, invasive species and isolation on reproductive success in a threatened alpine plant. Public Library of Science (PLOS) One. 9:e88948. DOI: 10.1371/journal.pone.0088948Krushelnycky PD., Loope LL., Giambelluca TW., Starr F., Starr K., Drake DR., Taylor AD., Robichaux RH., 2013. Climate-associated population declines reverse recovery and threaten future of an iconic high-elevation plant. Global Change Biology 19:911-922. DOI: 10.1111/gcb.12111Liancourt P., Spence LA., Song DS., Lkhagva A., Sharkhuu A., Boldgiv B., Helliker BR., Petraitis PS., Casper BB., 2013. Plant response to climate change varies with topography, interactions with neighbors, and ecotype. Ecology 94:444-453. DOI: 10.1890/12-0780.1Lins SRM., Coletta LD., de Campos-Ravagnani E., Gragnani JG., Mazzi EA., Martinelli LA., 2016. Stable carbon composition of vegetation and soils across an altitudinal range in the coastal Atlantic Forest of Brazil. Trees 30:1315-1329. DOI: 10.1007/s00468-016-1368-7Liu J., Yunhong T., Slik JWF., 2014. Topography related habitat associations of tree species traits, composition and diversity in a Chinese tropical forest. Forest Ecology and Management 330:75-81. DOI: 10.1016/j.foreco.2014.06.045Lynott MJ., Boutton TW., Price JE., Nelson DE., Antiquity SA., Jan N., 1986. Society for American Archaeology: Stable carbon isotopic evidence for maize agriculture in Southeast Missouri and Northeast Arkansas. American Antiquity 51:51-65. DOI: 10.2307/280393Magdas DA., Cristea G., Puscas R., Tusa F., 2014. The use of isotope ratios in commercial fruit juices authentication. Romanian Journal of Physics 59:355-359Marcott S., Shakun JD., Clark PU., Mix AC., 2013. A reconstruction of regional and global temperature for the past 11,300 years. Science 339:1198-1201. DOI: 10.1126/science.1228026Marshall JD., Linder S., 2013. Mineral nutrition and elevated [CO2] interact to modify 13C, an index of gas exchange, in Norway spruce. Tree Physiology 33:1132-1144. DOI: 10.1093/treephys/tpt004Martinelli LA., Piccolo MC., Townsend AR., Vitousek PM., Cuevas E., McDowell W., Robertson GP., Santos OC., Treseder K., 1999. Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46:45-65. DOI: 10.1023/A:1006100128782Menge DNL., Hedin LO., Pacala SW., 2012. Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems. Public Library of Science (PLOS) One. 7:e42045. DOI: 10.1371/journal.pone.0042045.Mihailova A., Pedentchouk N., Kelly SD., 2014. Stable isotope analysis of plant-derived nitrate - Novel method for discrimination between organically and conventionally grown vegetables. Food Chemistry 154:238-245. DOI: 10.1016/j.foodchem.2014.01.020Murakami H., Wang B., Li T., Kitoh A., 2013. Projected increase in tropical cyclones near Hawai’i. Nature Climate Change. 3:749-754. DOI: 10.1038/nclimate1890Nottingham AT., Turner BL., Stott AW., Tanner EVJ., 2015. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology and Biochemistry 80:26-33. DOI: 10.1016/j.soilbio.2014.09.012Ometto JPHB., Ehleringer JR., Domingues TF., Berry JA., Ishida FY., Mazzi E., Higuchi N., Flanagan LB., Nardoto GB., Martinelli LA., 2006. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79:251-274. DOI: 10.1007/s10533-006-9008-8.Ozolincius R., Lekevicius E., Stakenas V., Galvonaite A., Samas A., Valiukas D., 2014. Lithuanian forests and climate change: possible effects on tree species composition. European Journal of Forest Research 133:51-60. DOI: 10.1007/s10342-013-0735-9Pausch J., Kramer S., Scharroba A., Scheunemann N., Butenschoen O., Kandeler E., Marhan D., Riederer M., Scheu S., Kuzyakov Y., Ruess L., 2016. Small but active – pool size does not matter for carbon incorporation in below-ground food webs. Functional Ecology 30:479-489. DOI: 10.1111/1365-2435.12512Perakis SS., Tepley AJ., Compton JE., 2015. Disturbance and Topography Shape Nitrogen Availability and δ15N over Long-Term Forest Succession. Ecosystems 18:573-588. DOI: 10.1007/s10021-015-9847-zPeri PL., Ladd B., Pepper DA., Bonser SP., Laffan SW., Amelung W., 2012. Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia’s native forests. Global Change Biology 18:311-321. DOI: 10.1111/j.1365-2486.2011.02494.xPeterson BJ., Fry B., 1987. Stable isotopes in ecosystems studies. Annual Review of Ecology and Systematics 18:293-320. DOI: 10.1146/ S., 2013. Do shifting forest limits in south-west Norway keep up with climate change? Do shifting forest limits in south-west Norway keep up with climate change? Scandinavian Journal of Forest Research 28:574-580. DOI: 10.1080/02827581.2013.793776Riedel J., Dorn S., Plath M., Mody K., 2013. Growth, herbivore distribution, and herbivore damage of timber trees in a tropical silvopastoral reforestation system. Annals of Forest Science 70:75-86. DOI: 10.1007/s13595-012-0239-7Robinson D., 2001. δ15N as an integrator of the nitrogen. Trends in Ecology and Evolution 16:153-162. DOI: 10.1016/s0169-5347(00)02098-xRoggy JC., Prévost MF., Gourbiere F., Casabianca H., Garbaye J., Domenach AM., 1999. Leaf natural δ15N abundance and total N concentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120:171-182. DOI: 10.1007/s004420050846Safeeq M., Mair A., Fares A., 2013. Temporal and spatial trends in air temperature on the Island of Oahu, Hawai’i. International Journal of Climatology 33:2816-2835. DOI: 10.1002/joc.3629Scholl MA., Gingerich SB., Tribble GW., 2002. The influence of microclimates and fog on stable isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii. Journal of Hydrology 264:170-184. DOI: 10.1016/S0022-1694(02)00073-2Schulze ED., Ellis R., Schulze W., Trimborn P., Ziegler H., 1996. Diversity, metabolic types and δ13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia 106:352-369. DOI: 10.1007/BF00334563Schulze ED., Williams RJ., Farquhar GD., Schulze W., Langridge J., Miller JM., Walker BH., 1998. Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology 25:413-425. DOI: 10.1071/PP97113Song M., Djagbletey G., Nkrumah EE., Huang M., 2015. Patterns in leaf traits of leguminous and non-leguminous dominant trees along a rainfall gradient in Ghana. Journal of Plant Ecology 9:69-76. DOI: 10.1093/jpe/rtv038Soolanayakanahally RY., Guy RD., Street NR., Robinson KM., Silim SN., Albrectsen BR., Jansson S., 2015. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens. Frontiers in Plant Science 6:1-11. DOI: 10.3389/fpls.2015.00528Stevenson BA., Kelly EF., McDonald EV., Busacca AJ., 2005. The stable carbon isotope composition of soil organic carbon and pedogenic carbonates along a bioclimatic gradient in the Palouse region, Washington State, USA. Geoderma 124:37-47. DOI: 10.1016/j.geoderma.2004.03.006Vitasse Y., Delzon S., Bresson CC., Michalet R., Kremer A., 2009. Altitudinal differentiation in growth and phenology among populations of temperate-zone tree species growing in a common garden. Canadian Journal of Forest Research 39:1259-1269. DOI: 10.1139/X09-054Vitasse Y., Lenz A., Kollas C., Randin CF., Hoch G., Körner C., 2014. Genetic vs. non-genetic responses of leaf morphology and growth to elevation in temperate tree species. Functional Ecology 28:243-252. DOI: 10.1111/1365-2435.12161Vitoria AP, Viera TD, Camargo PD, Santiago LS., 2016. Using leaf d13C and photosynthetic parameters to understand acclimation to irradiance and leaf age effects during tropical forest regeneration. Forest Ecology and Management 379:50-60. DOI: 10.1016/j.foreco.2016.07.048Vitousek PM., 1998.The structure and functioning of montane tropical forests: control by climate, soils, and disturbance. Ecology. 79:1-2. DOI: 10.1890/0012-9658Vitousek PM., Ladefoged TN., Kirch PV., Hartshorn AS., Graves MW., Hotchkiss SC., Tulajapurkar S., Chadwick OA., 2004. Soils, Agriculture, and Society in Precontact Hawai'i. Science 304:1665-1669. DOI: 10.1126/science.1099619Vitousek PM., Turner DR., Parton WJ., Sanford RL., Sanford RL., 1994. Litter Decomposition on the Mauna Loa Environmental Matrix, Hawai’i: Patterns, Mechanisms, and Models. Ecology 75:418-429. DOI: M., Baker PJ., Bunyavejchewin S., Zuidema PA., 2014. Temperature and rainfall strongly drive temporal growth variation in Asian tropical forest trees. Oecologia 174:1449-1461. DOI: 10.1007/s00442-013-2846-xVoelker SL., Brooks JR., Meinzer FC., Anderson R., Bader MKF., Battipaglia G., Becklin KM., Beerling D., Bert D., Betancourt JL., Dawson TE., Domec JC., Guyette RP., Korner C., Leavitt SW., Linder S., Marshall JD., Mildner M., Ogee J., Panyushkina I., Plumpton HJ., Pregitzer KS., Saurer M., Smith AR., Siegwolf RTW., Stambaugh MC., Talhelm AF., Tardif JC., Van de Water PK., Ward JK., Wingate L., 2016. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: Evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Global Change Biology 22:889-902. DOI: 10.1111/gcb.13102Ward M., Dick CW., Gribel R., Lowe AJ., 2005. To self, or not to self…A review of outcrossing and pollen-mediated gene flow in neotropical trees. Heredity 95:248-254. DOI: 10.1038/sj.hdy.6800712Watzka M., Buchgraber K., Wanek W., 2006. Natural 15N abundance of plants and soils under different management practices in a montane grassland. Soil Biology and Biochemistry 38:1564-1576. DOI: M., Mehltreter K., Briones O., Kazda M., 2015. Stable carbon and nitrogen isotope compositions change with leaf age in two mangrove ferns. Flora 210:80-86. DOI: 10.1016/j.flora.2014.11.001Xu M., Wang G., Li X., Cai X., Li X., Christie P., Zhang J., 2015. The key factor limiting plant growth in cold and humid alpine areas also plays a dominant role in plant carbon isotope discrimination. Frontiers in Plant Science 6:961-969. DOI: 10.3389/fpls.2015.00961Zheng S., Shangguan Z., 2007. Spatial patterns of foliar stable carbon isotope compositions of C3 plant species in the Loess Plateau of China. Ecological Research 22:342-353. DOI: 10.1007/s11284-006-0024-xZhu Y., Siegwolf RTW., Durka W., Körner C., 2010. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162:853-863. DOI: 10.1007/s00442-009-1515-6






Research article