Different responses of Monochamus galloprovincialis and three non-target species to trap type, colour, and lubricant treatment


  • Tomasz Jaworski Department of Forest Protection, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland
  • Radosław Plewa Department of Forest Protection, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland
  • Aleksander Dziuk Department of Forest Protection, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland
  • Lidia Sukovata Department of Forest Protection, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, 05-090 Raszyn, Poland




Cerambycidae, clerid beetles, monitoring, PTFE, Spondylis buprestoides, surfactant, Thanasimus, traps


With the increasing threat to forests in Europe from the invasive pine wood nematode (PWN) Bursaphelenchus xylophilus, effective methods are needed to monitor and reduce populations of its insect vector, the pine sawyer beetle Monochamus galloprovincialis. In the present study, we tested the effectiveness of different trap types (multiple-funnel, cross-vane, and triangular), colours (black, white and clear), and lubricant (polytetrafluoroethylene, PTFE) treatments (different PTFE formulations and timing of trap treatment) on the catches of M. galloprovincialis and three most commonly captured non-target beetle species (the xylophagous Spondylis buprestoides and two predators, Thanasimus formicarius and T. femoralis) in Poland. Of the traps not treated with PTFE, the white and black 6-funnel traps were most effective in trapping M. galloprovincialis beetles, while the catches in the cross-vane traps (both white and clear) were low. Trap treatment with PTFE significantly increased trap effectiveness, regardless of PTFE type and time of application. The catches of S. buprestoides were affected by trap type, while those of T. formicarius depended on trap colour and size. Both species seem to respond positively to ethanol and/or α-pinene in the lure composition. PTFE treatment had a significant effect on the catches of T. femoralis. In conclusion, for the monitoring of M. galloprovincialis, we recommend the white cross-vane traps treated with dry PTFE. They are less but still effective in catching the target species, while their use, together with lures containing no ethanol and α-pinene, greatly reduces the catches of non-target insects S. buprestoides and T. formicarius.


Aikawa T., 2008. Transmission biology of Bursaphelenchus xylophilus in relation to its insect vector. In Zhao B.G., Futai K., Sutherland J.R., Takeuchi Y. (eds.), Pine wilt disease. Springer, Tokyo, pp. 123-138. https://doi.org/10.1007/978-4-431-75655-2_13Akkuzu E., Şahin M., Ugiş A., Bal E., 2021. Assessment of trap color and trap height above the ground on the capture of Ips sexdentatus and Thanasimus formicarius. Šumarski List 3-4: 169-174. https://doi.org/10.31298/sl.145.3-4.6Allison J.D., Bhandari B.D., McKenney J.L., Millar J.G., 2014. Design factors that influence the performance of flight intercept traps for the capture of longhorned beetles (Coleoptera: Cerambycidae) from the subfamilies Lamiinae and Cerambycinae. PLoS ONE 9(3): e93203. https://doi.org/10.1371/journal.pone.0093203Allison J.D., Borden J.H., McIntosh R.L., De Groot P., Gries R., 2001. Kairomonal response by four Monochamus species (Coleoptera: Cerambycidae) to bark beetle pheromones. Journal of Chemical Ecology 27(4): 633-646. https://doi.org/10.1023/A:1010353315939Allison J.D., Graham E.E., Poland T.M., Strom B.L., 2016. Dilution of fluon before trap surface treatment has no effect on Longhorned Beetle (Coleoptera: Cerambycidae) captures. Journal of Economic Entomology 109(3): 1215-1219. https://doi.org/10.1093/jee/tow081Allison J.D., Johnson C.W., Meeker J.R., Strom B.L., Butler S.M., 2011. Effect of aerosol surface lubricants on the abundance and richness of selected forest insects captured in multiple-funnel and panel traps. Journal of Economic Entomology 104(4): 1258-1264. https://doi.org/10.1603/EC11044Allison J.D., Redak R.A., 2017. The impact of trap type and design features on survey and detection of bark and woodboring beetles and their associates: a review and meta-analysis. Annual Review of Entomology 62: 127-146. https://doi.org/10.1146/annurev-ento-010715-023516Álvarez G., Etxebeste I., Gallego D., David G., Bonifacio L., Jactel H., Sousa E., Pajares J.A., 2015. Optimization of traps for live trapping of Pine Wood Nematode vector Monochamus galloprovincialis. Journal of Applied Entomology 139(8): 618-626. https://doi.org/10.1111/jen.12186Álvarez G., Gallego D., Hall D.R., Jactel H., Pajares J.A., 2016. Combining pheromone and kairomones for effective trapping of the Pine Sawyer Beetle Monochamus galloprovincialis. Journal of Applied Entomology 140(1-2): 58-71. https://doi.org/10.1111/jen.12297Bakke A., Kvamme T., 1981. Kairomone response in Thanasimus predators to pheromone components of Ips typographus. Journal of Chemical Ecology 7(2): 305-312. https://doi.org/10.1007/BF00995753Beresford D.V., Sutcliffe J.F., 2006. Studies on the effectiveness of coroplast sticky traps for sampling stable flies (Diptera: Muscidae), including a comparison to alsynite. Journal of Economic Entomology 99(3): 1025-1035. https://doi.org/10.1093/jee/99.3.1025Bolker B.M., Brooks M.E., Clark C.J., Geange S.W., Poulsen J.R., Stevens M.H.H., White J.-S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24(3): 127-135. https://doi.org/10.1016/j.tree.2008.10.008Bonifácio L., Henriques J., Inácio M.L., Naves P., Sousa E., Barroso J.M., Gonçalves E., Figueiredo A.C., 2021. Monitoring and control of the pinewood nematode and its insect vector populations. Constraints and innovations. Book of Abstracts, International Symposium IUFRO on Pine Wilt Disease “PWD2020”, 22-26 November 2021. Orleans, France, p. 50.Bonifácio L., Praias F., Sousa E., 2012. Trapping Monochamus galloprovincialis (Coleoptera: Cerambycidae), vector of the Pine Wood Nematode, with pine allelochemicals, in Portugal. Silva Lusitana 20(1-2): 39-53.Boone C.K., Sweeney J., Silk P., Hughes C., Webster R.P., Stephen F., Maclauchlan L., Bentz B., Drumont A., Zhao B., Berkvens N., Casteels H., Grégoire J.-C., 2018. Monochamus species from different continents can be effectively detected with the same trapping protocol. Journal of Pest Science 92(1): 3-11. https://doi.org/10.1007/s10340-018-0954-4Bracalini M., Croci F., Ciardi E., Mannucci G., Papucci E., Gestri G., Tiberi R., Panzavolta T., 2021. Ips sexdentatus mass-trapping: Mitigation of its negative effects on saproxylic beetles larger than the target. Forests 12(2): 175. https://doi.org/10.3390/f12020175Brooks M.E., Kristensen K., van Benthem K.J., Magnusson A., Berg C.W., Nielsen A., Skaug H.J., Mächler M., Bolker B.M., 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9(2): 378-400. https://doi.org/10.32614/RJ-2017-066Campbell S.A., Borden J.H., 2005. Bark reflectance spectra of conifers and angiosperms: implications for host discrimination by coniferophagous bark and timber beetles. The Canadian Entomologist 137(6): 719-722. https://doi.org/10.4039/N04-082Cavaletto G., Faccoli M., Marini L., Spaethe J., Giannone F., Moino S., Rassati D., 2021. Exploiting trap color to improve surveys of longhorn beetles. Journal of Pest Science 94(3): 871-883. https://doi.org/10.1007/s10340-020-01303-wCavaletto G., Faccoli M., Marini L., Spaethe J., Magnani, G., Rassati D., 2020. Effect of trap color on captures of bark- and wood-boring beetles (Coleoptera; Buprestidae and Scolytinae) and associated predators. Insects 11(11): 749. https://doi.org/10.3390/insects11110749Costello S.L., Negrón J.F., Jacobi W.R., 2008. Traps and attractants for wood-boring insects in ponderosa pine stands in the Black Hills, South Dakota. Journal of Economic Entomology 101(2): 409-420. https://doi.org/10.1603/0022-0493(2008)101[409:taafwi]2.0.co;2Danilevsky M.L., 2020 (ed.). Catalogue of Palaearctic Coleoptera, vol. 6 (1), Chrysomeloidea I (Vesperidae, Disteniidae, Cerambycidae). Revised and updated edition. Brill, Leiden/Boston.De Groot P., Nott R., 2001. Evaluation of traps of six different designs to capture pine sawyer beetles (Coleoptera: Cerambycidae). Agricultural and Forest Entomology 3(2): 107-111. https://doi.org/10.1046/j.1461-9563.2001.00087.xDe Groot P., Nott R.W., 2003. Response of Monochamus (Col., Cerambycidae) and some Buprestidae to flight intercept traps. Journal of Applied Entomology 127(9-10): 548-552. https://doi.org/10.1046/j.1439-0418.2003.00799.xEPPO, 2013. EPPO Standards – Diagnostics. PM 7/4 (3) Bursaphelenchus xylophilus. Bulletin OEPP/EPPO Bulletin 43(1): 105-118. https://doi.org/10.1111/epp.12024Evans H.F., Mc Namara D.G., Braasch H., Chadoeuf J., Magnusson C., 1996. Pest Risk Analysis (PRA) for the territories of European Union (as PRA area) on Bursaphelenchus xylophilus and its vectors in the genus Monochamus. Bulletin OEPP/EPPO Bulletin 26(2): 199-249. https://doi.org/10.1111/j.1365-2338.1996.tb00594.xFoit J., Čermák V., Gaar V., Hradil K., Nový V., Rolincová P., 2019. New insights into the life history of Monochamus galloprovincialis can enhance surveillance strategies for the pinewood nematode. Journal of Pest Science 92(3): 1203-1215. https://doi.org/10.1007/s10340-019-01110-yFox J., Weisberg S., 2019. An R Companion to Applied Regression, Third Edition. Thousand Oaks CA: Sage.Francardi V., De Silva J., Pennacchio F., Roversi P.F., 2009. Pine volatiles and terpenoid compounds attractive to European xylophagous species, vectors of Bursaphelenchus spp. nematodes. Phytoparasitica 37(4): 295-302. https://doi.org/10.1007/s12600-009-0038-3Francese J.A., Rietz M.L., Mastro V.C., 2013. Optimization of multifunnel traps for Emerald Ash Borer (Coleoptera: Buprestidae): Influence of size, trap coating, and color. Journal of Economic Entomology 106(6): 2415-2423. https://doi.org/10.1603/EC13014Graham E.E., Mitchell R.F., Reagel P.F., Barbour J.D., Millar J.G., Hanks L.M., 2010. Treating panel traps with a fluoropolymer enhances their efficiency in capturing Cerambycid Beetles. Journal of Economic Entomology 103(3): 641-647. https://doi.org/10.1603/ec10013Graham E.E., Poland T.M., 2012. Efficacy of fluon conditioning for capturing cerambycid beetles in different trap designs and persistence on panel traps over time. Journal of Economic Entomology 105(2): 395-401. https://doi.org/10.1603/EC11432Graham E.E., Poland T.M., McCullough D.G., Millar J.G., 2012. A comparison of trap type and height for capturing cerambycid beetles (Coleoptera). Journal of Economic Entomology 105(3): 837-846. https://doi.org/10.1603/EC12053Hagen K.S., Mills N.J., Gordh G., McMurtry J.A., 1999. Terrestrial arthropod predators of insect and mite pests. In Bellows T.S., Fisher T.W. (eds.), Handbook of Biological Control. Academic Press, pp. 383-503. https://doi.org/10.1016/b978-012257305-7/50063-1Heber T., Helbig C.E., Osmers S., Müller M.G., 2021. Evaluation of attractant composition, application rate, and trap type for potential mass trapping of Ips typographus (L.). Forests 12(12): 1727. https://doi.org/10.3390/f12121727Hoch G., Connell J., Roques A., 2020. Testing multi-lure traps for surveillance of native and alien longhorn beetles (Coleoptera, Cerambycidae) at ports of entry and in forests in Austria. Management of Biological Invasions 11(4): 677-688. https://doi.org/10.3391/mbi.2020.11.4.04Ibeas F., Gallego D., Díez J.J., Pajares J.A., 2007. An operative kairomonal lure for managing pine sawyer beetle Monochamus galloprovincialis (Coleoptera: Cerambycidae). Journal of Applied Entomology 131(1): 13-20. https://doi.org/10.1111/j.1439-0418.2006.01087.xJurc M., Bojovic S., Fernández Fernández M., Jurc D., 2012. The attraction of cerambycids and other xylophagous beetles, potential vectors of Bursaphelenchus xylophilus, to semio-chemicals in Slovenia. Phytoparasitica 40(4): 337-349. https://doi.org/10.1007/s12600-012-0234-4Jurc M., Hauptman T., Pavlin R., Borkovič D., 2016. Target and non-target beetles in semiochemical-baited cross vane funnel traps used in monitoring Bursaphelenchus xylophilus (PWN) vectors in pine stands. Phytoparasitica 44(2): 151-164. https://doi.org/10.1007/s12600-016-0515-4Kelsey R.G., Joseph G., 1999. Ethanol and water in Pseudotsuga menziesii and Pinus ponderosa stumps. Journal of Chemical Ecology 25(12): 2779-2792. https://doi.org/10.1023/A:1020807709314Kerr J.L., Kelly D., Bader M.K.-F., Brockerhoff E.G., 2017. Olfactory cues, visual cues, and semiochemical diversity interact during host location by invasive forest beetles. Journal of Chemical Ecology 43(1): 17-25. https://doi.org/10.1007/s10886-016-0792-xKobayashi F., Yamane A., Ikeda T., 2003. The Japanese pine sawyer beetle as the vector of pine wilt disease. Annual Review of Entomology 29(1): 115-135. https://doi.org/10.1146/annurev.en.29.010184.000555Lenth R., 2020. emmeans: estimated marginal means, aka least-squares means. R package version 1.4.5.Li M., Li H., Sheng R.-C., Sun H., Sun S.-H., Chen F.-M., 2020. The first record of Monochamus saltuarius (Coleoptera; Cerambycidae) as vector of Bursaphelenchus xylophilus and its new potential hosts in China. Insects 11(9): 1-10. https://doi.org/10.3390/insects11090636Liebhold A.M., Macdonald W.L., Bergdahl D., Mastro V.C., 1995. Invasion by exotic forest pests: a threat to forest ecosystems. Forest Science Monographs 30: 1-49. https://doi.org/10.1093/forestscience/41.s1.a0001Mangiafico S.S., 2016. Summary and analysis of extension program evaluation in R, version 1.15.0. rcompanion.org/handbook/ (accessed on 13 December 2018)McIntosh R.L., Katinic P.J., Allison J.D., Borden J.H., Downey D.L., 2001. Comparative efficacy of five types of trap for woodborers in the Cerambycidae, Buprestidae and Siricidae. Agricultural and Forest Entomology 3(2): 113-120. https://doi.org/10.1046/j.1461-9563.2001.00095.xMenéndez-Gutiérrez M., Alonso M., Jiménez E., Toval G., Mansilla P., Abelleira A., Abelleira-Sanmartín A., Díaz R., 2018. Interspecific variation of constitutive chemical compounds in Pinus spp. xylem and susceptibility to pinewood nematode (Bursaphelenchus xylophilus). European Journal of Plant Pathology 150(4): 939-953. https://doi.org/10.1007/s10658-017-1334-2Miller D.R., Crowe C.M., 2011. Relative performance of Lindgren multiple-funnel, intercept panel, and colossus pipe traps in catching Cerambycidae and associated species in the southeastern United States. Journal of Economic Entomology 104(6): 1934-1941. https://doi.org/10.1603/ec11166Miller D.R., Duerr D.A., 2008. Comparison of arboreal beetle catches in wet and dry collection cups with Lindgren multiple funnel traps. Journal of Economic Entomology 101(1): 107-113. https://doi.org/10.1603/0022-0493(2008)101[107:coabci]2.0.co;2Morewood W.D., Hein K.E., Katinic P.J., Borden J.H., 2002. An improved trap for large wood-boring insects, with special reference to Monochamus scutellatus (Coleoptera: Cerambycidae). Canadian Journal of Forest Research 32(3): 519-525. https://doi.org/10.1139/x01-224Mota M.M., Vieira P., 2008. Pine wilt disease: A worldwide threat to forest ecosystems. Springer. https://doi.org/10.1007/978-1-4020-8455-3Pajares J.A., Álvarez G., Ibeas F., Gallego D., Hall D.R., Farman D.I., 2010. Identification and field activity of a male-produced aggregation pheromone in the pine sawyer beetle, Monochamus galloprovincialis. Journal of Chemical Ecology 36(6): 570-583. https://doi.org/10.1007/s10886-010-9791-5Pajares J.A., Ibeas F., Diez J.J., Gallego D., 2004. Attractive reponses by Monochamus galloprovincialis (Col., Cerambycidae) to host and bark bettle semiochemicals. Journal of Applied Entomology 128(9‐10): 633-638. https://doi.org/10.1111/j.1439-0418.2004.00899.xRassati D., Toffolo E.P., Battisti A., Faccoli M., 2012. Monitoring of the pine sawyer beetle Monochamus galloprovincialis by pheromone traps in Italy. Phytoparasitica 40(4): 329-336. https://doi.org/10.1007/s12600-012-0233-5Rassati D., Marini L., Marchioro M., Rapuzzi P., Magnani G., Poloni R., Di Giovanni F., Mayo P., Sweeney J., 2019. Developing trapping protocols for wood-boring beetles associated with broadleaf trees. Journal of Pest Science 92(1): 267-279. https://doi.org/10.1007/s10340-018-0984-yRutherford T.A., Webster J.M., 1987. Distribution of pine wilt disease with respect to temperature in North America, Japan, and Europe. Canadian Journal of Forest Research 17(9): 1050-1059. https://doi.org/10.1139/x87-161Sanchez-Husillos E., Etxebeste I., Pajares J., 2015. Effectiveness of mass trapping in the reduction of Monochamus galloprovincialis Olivier (Col.: Cerambycidae) populations. Journal of Applied Entomology 139(10): 747-775. https://doi.org/10.1111/jen.12219Santini A., Ghelardini L., De Pace C., Desprez-Loustau M.L., Capretti P., Chandelier A., Cech T., Chira D., Diamandis S., Gaitniekis T., Hantula J., Holdenrieder O., Jankovsky L., Jung T., Jurc D., Kirisits T., Kunca A., Lygis V., Malecka M., Marcais B., Schmitz S., Schumacher J., Solheim H., Solla A., Szabò I., Tsopelas P., Vannini A., Vettraino A. M., Webber J., Woodward S., Stenlid J., 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist 197(1): 238-250. https://doi.org/10.1111/j.1469-8137.2012.04364.xSchroeder L.M., 1999. Prolonged development time of the bark beetle predator Thanasimus formicarius (Col.: Cleridae) in relation to its prey species Tomicus piniperda (L.) and Ips typographus (L.) (Col.: Scolytidae). Agricultural and Forest Entomology 1(2): 127-135. https://doi.org/10.1046/j.1461-9563.1999.00018.xSchroeder M., 2003. Differences in responses to α-pinene and ethanol, and flight periods between the bark beetle predators Thanasimus femoralis and T. formicarius (Col.: Cleridae). Forest Ecology and Management 177(1-3): 301-311. https://doi.org/10.1016/S0378-1127(02)00441-3Schroeder M., 2019. Trapping strategy for Monochamus sutor and Monochamus galloprovincialis: potential vectors of the pine wood nematode in Scandinavia. Agricultural and Forest Entomology 21(4): 372-378. https://doi.org/10.1111/afe.12339Shibata E., Sato S., Sakuratani Y., Sugimoto T., Kimura, Ito F., 1996. Cerambycid beetles (Coleoptera) lured to chemicals in forests of Nara prefecture, Central Japan. Annals of the Entomological Society of America 89(6): 835-842. https://doi.org/10.1093/aesa/89.6.835Skrzecz I., 2021. Atraktanty do stosowania w leśnictwie w roku 2022. Instytut Badawczy Leśnictwa, Analizy i Raporty Nr 32, Część B. https://www.ibles.pl/documents/10180/631237/Atraktanty-aktualizacja%2003.01.2022%20FINAL.pdfStrom B.L., Roton L.M., Goyer R.A., Meeker J.R., 1999. Visual and semiochemical disruption of host finding in the southern pine beetle. Ecological Applications 9(3): 1028-1038. https://doi.org/10.1890/1051-0761(1999)009[1028:VASDOH]2.0.CO;2Sousa E., Bravo M.A., Pires J., Naves P., Penas A.C., Bonifácio L., Mota M., 2001. Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae) associated with Monochamus galloprovincialis (Coleoptera; Cerambycidae) in Portugal. Nematology 3(1): 89-91. https://doi.org/10.1163/156854101300106937Sukovata L., Kolk A., Jaworski T., Plewa R., 2012. The risk of pine wilt disease in Poland. Folia Forestalia Polonica, Series A, 54(1): 42-47.Sweeney J., De Groot P., MacDonald L., Smith S., Cocquempot C., Kenis M., Gutowski J.M., 2004. Host volatile attractants and traps for detection of Tetropium fuscum (F.), Tetropium castaneum L., and other longhorned beetles (Coleoptera: Cerambycidae). Environmenatal Entomology 33(4): 844-854. https://doi.org/10.1603/0046-225X-33.4.844Thomaes A., Drumont A., Warzée N., Grégoire J.-C., Stassen E., Crèvecoeur L., Berckvens N., Casteels H., Van De Vijver D., Raemdonck H., 2017. Ecology and distribution of Thanasimus formicarius (Linnaeus, 1758) and the newly discovered Thanasimus femoralis (Zetterstedt, 1828) in Belgium (Coleoptera: Cleridae). Bulletin de la Société royale belge d’Entomologie/Bulletin van de Koninklijke Belgische Vereniging voor Entomologie 153(2): 206-214.Torres-Vila L.M., Zugasti C., De-Juan J.M., Oliva M.J., Montero C., Mendiola F.J., Conejo Y., Sánchez Á., Fernández F., Ponce F., Espárrago G., 2015. Mark-recapture of Monochamus galloprovincialis with semiochemical-baited traps: Population density, attraction distance, flight behaviour and mass trapping efficiency. Forestry 88(2): 224-236. https://doi.org/10.1093/forestry/cpu049Vicente C., Espada M., Vieira P., Mota M., 2012. Pine Wilt Disease: A threat to European forestry. European Journal of Plant Pathology 133(1): 89-99. https://doi.org/10.1007/s10658-011-9924-xWehnert M., Müller M., 2012. ‘Allochthonous Kairomones’ in stands of European beech (Fagus sylvatica) – Approach for nature-based bark beetle management with clerid beetles (Thanasimus spp.). Biological Control 62(1): 16-23. https://doi.org/10.1016/j.biocontrol.2012.03.003Zuur A., Ieno E., Walker N., Saveliev A., Smith G., 2009. Mixed effects models and extensions in ecology with R. Springer Science+Business Media, New York. https://doi.org/10.1007/978-0-387-87458-6






Research article